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Summary: Errors-in-variables models in high-dimensional settings pose two challenges in application. Firstly, the

number of observed covariates is larger than the sample size, while only a small number of covariates are true

predictors under an assumption of model sparsity. Secondly, the presence of measurement error can result in severely

biased parameter estimates, and also affects the ability of penalized methods such as the lasso to recover the true

sparsity pattern. A new estimation procedure called SIMSELEX (SIMulation-SELection-EXtrapolation) is proposed.

This procedure makes double use of lasso methodology. Firstly, the lasso is used to estimate sparse solutions in the

simulation step, after which a group lasso is implemented to do variable selection. The SIMSELEX estimator is

shown to perform well in variable selection, and has significantly lower estimation error than naive estimators that

ignore measurement error. SIMSELEX can be applied in a variety of errors-in-variables settings, including linear

models, generalized linear models, and Cox survival models. It is furthermore shown in the supporting information

how SIMSELEX can be applied to spline-based regression models. A simulation study is conducted to compare the

SIMSELEX estimators to existing methods in the linear and logistic model settings, and to evaluate performance

compared to naive methods in the Cox and spline models. Finally, the method is used to analyze a microarray dataset

that contains gene expression measurements of favorable histology Wilms tumors.
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1. Introduction

Errors-in-variables models arise in settings where some covariates cannot be measured with

great accuracy. As such, the observed covariates tend to have larger variance than the true

underlying variables, obscuring the relationship between true covariates and outcome. The

inflated variances are consistent with the classic additive measurement error framework,

which is assumed to hold throughout this paper. The work is motivated by microarray

studies in which measurements are taken for a large number of genes, and it is of interest to

identify genes related to some outcome of interest. The gene measurements are analyzed

after applying a log-transformation to the strictly positive observations, further making

the assumption of additive measurement error more realistic. Microarray studies tend to

have both noisy measurements and small sample sizes (relative to the number of genes

measured). Biological variation in the data is usually of primary interest to investigators,

but is obscured by technical variation resulting from sources such as sample preparation,

labeling, and hybridization, see Zakharkin et al. (2005). As such, methodology dealing with

measurement error in a large-dimensional setting is needed to identify genes related to the

outcome of interest. Assuming that only a small number of genes are related to the outcome of

interest further imposes a requirement of solution sparsity. One example of a relevant dataset

is the favorable histology Wilms tumors analyzed by Sørensen et al. (2015). In this study,

Affymetric microarray gene expression measurements are used to identify genes associated

with relapse within three years of successful treatment.

Formalizing the problem, let a response variable Y ∈ R be related to a function of covariates

X ∈ Rp. However, the observed sample consists of measurements (W1, Y1), . . . , (Wn, Yn),

with Wi = Xi + Ui, i = 1, . . . , n where the measurement error components Ui ∈ Rp are

i.i.d. Gaussian with mean zero and covariance matrix Σu. The Ui are assumed independent

of the true covariates Xi, and the matrix Σu is assumed known or estimable from auxiliary

data. This paper will consider models that specify (at least partially) a distribution for
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Y conditional on X involving unknown parameters θ. Such models include generalized

linear models, Cox survival models, and spline-based regression models. Not accounting

for measurement error when fitting these models can result in biased parameter estimates,

see Carroll et al. (2006). The effects of measurement error have mostly been studied in the

low-dimensional setting where the sample size n is larger than the number of covariates p,

see Armstrong (1985) for generalized linear models and Prentice (1982) for Cox survival

models. Ma and Li (2010) also studied variable selection in the measurement error context

using penalized estimating equations.

We consider these models in the high-dimensional setting where p can be much larger

than n. The true θ is assumed sparse, having only d < min(n, p) non-zero components. Of

interest is both recovery of the true sparsity pattern as well as the estimation of the non-

zero components of θ. When the covariates X are observed without error, the lasso and its

generalizations as proposed by Tibshirani (1996) can be employed for estimating a sparse

θ. The lasso adds the `1 norm of θ to the loss function L(θ;Y,X) being minimized. The

estimator θ̂ is defined to be

θ̂ = argmin
θ

[L(θ;Y,X) + ξ1 ‖θ‖1] (1)

where ξ1 is a tuning parameter and ‖θ‖1 =
∑p

j=1 |θj| is the `1 norm, with θj being the jth

component of θ. For the generalized linear model, L(θ;Y,X) is often chosen as the negative

log-likelihood function, while for the Cox survival model, L(θ;Y,X) is the negative log of

the partial likelihood function, see Hastie et al. (2015) for details.

In high dimensional settings, the presence of measurement error can have severe conse-

quences on the lasso estimator: the number of non-zero estimates can be inflated, sometimes

dramatically, and as such the true sparsity pattern is not recovered (Rosenbaum et al., 2010);

see section A of the supporting information for an illustration. To correct for measurement

error in the high-dimensional setting, Rosenbaum et al. (2010) proposed a matrix uncertainty

selector (MU) for linear models. Rosenbaum et al. (2013) proposed an improved version of
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the MU selector, while Belloni et al. (2017) proved its near-optimal minimax properties

and developed a conic programming estimator that can achieve the minimax bound. The

conic estimator requires selection of three tuning parameters, a difficult task in practice.

Another approach for handling measurement error is to modify the loss function or the

conditional score functions used with the lasso, see Loh and Wainwright (2012), Sørensen

et al. (2015) and Datta et al. (2017). Additionally, Sørensen et al. (2018) developed the

generalized matrix uncertainty selector (GMUS) for generalized linear models. Both the

conditional score approach and GMUS require subjective choices of tuning parameters.

This paper proposes a new method of estimation called Simulation-Selection-Extrapolation

(SIMSELEX). This method is based on the SIMEX procedure of Cook and Stefanski (1994)

which has been well-studied for correcting Normally distributed measurement error in low-

dimensional settings, see for example Stefanski and Cook (1995), Küchenhoff et al. (2006) and

Apanasovich et al. (2009). A SIMEX procedure for Laplace measurement error was studied

by Koul et al. (2014) who considered a single covariate measured with error. Yi et al. (2015)

combined SIMEX with a generalized estimating equation approach for variable selection on

longitudinal data with covariate measurement error. Their variable selection step is carried

out after the extrapolation step and requires a weight matrix to be prespecified.

To achieve model sparsity, the SIMSELEX approach proposed in this paper augments

SIMEX with a variable selection step (based on the group lasso). Selection is performed

after the simulation step and before the extrapolation step. This means that lasso-type

methodology is applied twice in SIMSELEX, once to obtain a sparse solution in the simula-

tion step, and then again in the variable selection step. The procedure inherits the flexibility

of SIMEX and can be applied to a variety of different high-dimensional errors-in-variables

models.

The remainder of this paper is organized as follows. In Section 2, the SIMSELEX procedure

for the high-dimensional setting is developed. In Section 3, application of SIMSELEX is
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illustrated for linear, logistic, and Cox regression models. In Section 4, the methodology is

illustrated with the favorable histology Wilms tumor data. Section 5 contains concluding

remarks.

2. The SIMSELEX Estimator

Let Xi denote a vector of covariates, let Wi = Xi +Ui denote the covariates contaminated

by measurement error Ui, and let Yi denote an outcome variable depending on Xi in a

known way through parameter vector θ. The measurement error Ui is assumed independent

of Xi, and to be multivariate Gaussian with mean zero and known covariance matrix Σu.

The observed data are pairs (Wi, Yi), i = 1, . . . , n. While the outcomes Yi depend on the

true covariates Xi, only the observed Wi are available for model estimation. Now, let S

denote a method for estimating θ. If the uncontaminated Xi had been observed, we could

calculate the true estimator θ̂true = S({Xi, Yi}i=1,...,n). The naive estimator of θ based on

the observed sample is θ̂naive = S({Wi, Yi}i=1,...,n) and treats the Wi as if no measurement

error is present. Generally, the naive estimator is neither consistent nor unbiased for θ.

A SIMEX estimator of θ was proposed by Cook and Stefanski (1994). In the simulation

step, a grid of values 0 < λ1 < . . . < λM is chosen. For each λm, B sets of pseudodata

are generated by adding simulated random noise, W
(b)
i (λm) = Wi + λ

1/2
m U

(b)
i , b = 1, . . . , B,

with U (b) having the same multivariate Gaussian distribution as U . Under this construction,

Cov[W
(b)
i (λm)] = (1 + λm)Σu. For each set of pseudodata, the naive estimator is calculated,

θ̂(b)(λm) = S({W(b)
i (λm), Yi}i=1,...,n). These naive estimators are then averaged, θ̂(λm) =

B−1
∑B

b=1 θ̂
(b)(λm). In the extrapolation step θ̂(λ) is modeled as a function of λ using a

suitable function and extrapolated to λ = −1, which corresponds to the error-free case and

gives estimator θ̂simex.

Unfortunately SIMEX as described above should not be applied to the high-dimensional

setting without some adjustments. Even if method S enforces sparsity of θ̂(b)(λm) for a given
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set of pseudodata, this does not guarantee sparsity of the average θ̂(λm), or a consistent spar-

sity pattern across values of λm. Let (λm, θ̂j(λm)), m = 1, . . . ,M , denote the solution path

for the θj, the jth component of θ, and assume θj = 0. If θ̂j(λi) 6= 0 for even a single λi, it will

result in an extrapolated value θ̂j(−1) 6= 0. In this way, many components of the extrapolated

solution can be non-zero. The SIMSELEX (SIMulation-SELection-EXtrapolation) algorithm,

presented below, addresses solution sparsity. Fundamental to the SIMSELEX approach is a

double-use of the lasso: it is used for parameter estimation in the simulation step to ensure

solution sparsity for a given set of pseudodata, and in the selection step to determine which

covariates to include in the model.

2.1 Simulation step

The simulation step of SIMSELEX is identical to the simulation step of SIMEX. However,

the criterion function being minimized for each set of pseudodata now incorporates a lasso-

type penalty on the model parameters. For a given value of λ and corresponding pseudodata

(W
(b)
i (λ), Yi), i = 1, . . . , n, the estimator θ̂(b)(λ) is calculated according to a criterion of

the form in (1) with the tuning parameter ξ
(λ,b)
1 . Note that cross-validation is implemented

separately for each set of pseudodata. Two popular choices for the tuning parameter are

ξmin, the value that minimizes the estimated prediction risk, and ξ1se, the value that makes

the estimated prediction risk fall within one standard error of the minimum (one-se-rule),

see Friedman et al. (2001). The simulation step results in pairs (λm, θ̂(λm)), m = 1, . . . ,M ,

which are then used in the selection and extrapolation steps described next.

2.2 Selection step

Variable selection is performed by applying a version of the group lasso of Yuan and Lin

(2006) to the pairs (λm, θ̂(λm)). It is assumed that the quadratic function serves as a good

approximation to this relationship. Now, letting θ̂mj = θ̂j(λm), it follows that

θ̂mj = γ0j + γ1jλm + γ2jλ
2
m + emj, m = 1, . . . ,M, j = 1, . . . , p, (2)
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with emj denoting zero-mean error terms. To achieve model sparsity, it is desirable to

shrink (as a group) the parameters (γ0j, γ1j, γ2j) to the vector (0, 0, 0) for many of the

components θj. Extrapolation will then only be applied to the variables with non-zero

solutions (γ̂0j, γ̂1j, γ̂2j), with all other coefficients being set equal to 0. If the true model

is sparse, many of the solutions (γ̂0j, γ̂1j, γ̂2j) will be shrunk to the zero vector. Note that

the assumed quadratic relationship (2) could easily be replaced with a linear relationship.

However, a more “complicated” relationship may be unsuitable for selection as developed

here, as such a choice would result in a non-convex loss function below. This would be very

expensive computationally when paired with a lasso-type penalty.

The p equations in (2) can be written in matrix form, Θ = ΛΓ +E, where

Λ =


1 λ1 λ2

1

...
...

...

1 λM λ2
M

 , Θ =


θ̂11 . . . θ̂1p

...
...

θ̂M1 . . . θ̂Mp

 ,

Γ =


γ01 . . . γ0p

γ11 . . . γ1p

γ21 . . . γ2p

 and E =


e11 . . . e1p

...
...

eM1 . . . eMp.

 .
When the kth column of the estimated matrix Γ̂ is a zero vector, the corresponding kth

column of Θ̂ = ΛΓ̂ will also be a zero vector and the kth variable is not selected for inclusion

in the model. In the present context, the group lasso penalized discrepancy function

D(Γ) =
1

2

M∑
m=1

p∑
j=1

(
θ̂mj − γ0j − γ1jλm − γ2jλ

2
m

)2

+ ξ2

(
p∑
j=1

√
γ2

0j + γ2
1j + γ2

2j

)
is used with ξ2 a tuning parameter. This function can be written in matrix form,

D(Γ) =
1

2

p∑
j=1

(
‖Θj −ΛΓj‖2

2 + ξ2 ‖Γj‖2

)
(3)

where Θj and Γj denote the jth columns of Θ and Γ respectively, and ‖Γj‖2 =
√
γ2

0j + γ2
1j + γ2

2j

denotes the `2 norm.
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Group lasso variable selection is illustrated in the left plot of Figure 1 where each path

represents the `2 norm of a column of Γ̂ as a function of ξ2 in the Wilms tumor data example.

Note that only eight of 2074 paths are shown. A larger value of ξ2 sets more coefficients to

zero. The cross-validation (one-se rule) value of ξ2 is also shown.

To find Γ̂ that minimizes D, standard numerical subgradient methods can be used. As

equation (3) is block-separable and convex, subgradient methods will converge to the global

minimum. The subgradient equations (Hastie et al., 2015, Section 5.2.2) are

−ΛT
(
Θj −ΛΓ̂j

)
+ ξ2ŝj = 0, j = 1, . . . , p, (4)

where ŝj ∈ R3 is an element of the subdifferential of the norm ||Γ̂j||2. As a result, if Γ̂j 6= 0,

then ŝj = Γ̂j/||Γ̂j||2. On the other hand, if Γ̂j = 0, then ŝj is any vector with ‖ŝj‖2 ≤ 1.

Therefore, Γ̂j must satisfy

Γ̂j =


0 if

∥∥Λ>Θj

∥∥
2
≤ ξ2Λ>Λ +

ξ2∥∥∥Γ̂j

∥∥∥
2

I

−1

Λ>Θj otherwise.

(5)

The first equation of (5) gives a simple rule for when to set the columns of Γ̂ equal to 0

for a specific value of ξ2. Therefore Γ̂ can be computed using proximal gradient descent

(Hastie et al., 2015, Section 5.3). At the kth iteration, each column Γ̂j can be updated by

first calculating ω
(k)
j = Γ̂

(k−1)
j + νΛ>(Θj −ΛΓ̂

(k−1)
j ) and then using this quantity to update

Γ̂
(k)
j =

1− νξ2∥∥∥ω(k)
j

∥∥∥
2


+

ω
(k)
j

for all j = 1, . . . , p. Here, ν is the step size that needs to be specified for the algorithm and

(z)+ = max(z, 0). The convergence of the algorithm is guaranteed for step size ν ∈ (0, 1/L)

where L is the maximum eigenvalue of the matrix Λ>Λ/M . The parameter ξ2 can be chosen

using cross-validation. The algorithm stops when the distance between the current estimate
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Γ̂(k) and the previous estimate Γ̂(k−1) is smaller than some tolerance level, say 10−4. The jth

variable is selected for inclusion in the model if Γ̂
(final)
j is non-zero.

2.3 Extrapolation step

The extrapolation step of SIMSELEX is identical to that of SIMEX, but with extrapolation

only applied to the selected variables. Thus, if the jth variable has been selected for inclusion

in the model, an extrapolation function Γex(λ) is fit to the simulation-step pairs (λm, θ̂j(λm)).

Let Γ̂ex,j(λ) denote the extrapolation function fit obtained for the coefficient path of variable

j. The SIMSELEX estimate is then given by θ̂j = Γ̂ex,j(−1). Two common extrapolation

functions are the quadratic and nonlinear means models, respectively Γquad(λ) = γ0 + γ1λ+

γ2λ
2 and Γnonlin(λ) = γ0 + γ1/(γ2 + λ). Note that the extrapolation step does not directly

incorporate any model penality, but the coefficient paths being used for extrapolation did

result from fitting a penalized model in the simulation step.

The right plot in the Figure 1 illustrates the simulation and extrapolation steps of SIMSE-

LEX. For four genes selected in the Wilms tumor example, the plotted points represents the

coefficients resulting from added measurement error level λ, and the dotted lines illustrate

quadratic extrapolation to λ = −1.

[Figure 1 about here.]

It is important to note that the extrapolation step does not make use of the estimate Γ̂

calculated by minimizing (3) in the selection step. Doing so will result in a final estimator

θ̂ that performs poorly due to aggressive shrinkage of the columns of Γ̂ from the group

lasso. This does give SIMSELEX the feel of model refitting post-selection as discussed by

Lederer (2013). However, this is not the case. By using the estimate coefficient paths from the

selection step, we are avoiding double shrinkage before arriving at our final estimator. A true

post-selection SIMSELEX approach is discussed in section F of the supporting information.
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3. Model Illustration and Simulation Results

SIMSELEX performance in high-dimensional errors-in-variables models is discussed in this

section for linear, logistic, and Cox regression models and in section E of the supporting

information for spline-based regression models. Where applicable, the performance of existing

estimators is also included. Performance was assessed through extensive simulation studies.

The metrics used for the comparison of estimators relate to the recovery of the sparsity

pattern and the estimation error of the parameter estimates. Throughout the simulations,

the measurement error covariance matrix was assumed known.

3.1 Linear Regression

Three solutions have been proposed in the literature for linear models with high-dimensional

covariates subject to measurement error. Rosenbaum et al. (2010) proposed the Matrix

Uncertainty Selection (MUS), which does not require knowledge of the measurement error

covariance matrix Σu. Sørensen et al. (2015) developed a corrected scores lasso, while Belloni

et al. (2017) proposed a conic programming estimator. The latter two approaches require

knowledge of Σu. Furthermore, the corrected scores lasso requires the selection of one tuning

parameter, and the conic programming estimator requires the selection of three tuning

parameters. See section B.1 of the supporting information for a brief overview of these

approaches.

For the simulation study, data pairs (Wi, Yi), i = 1, . . . , n, were generated assuming

Yi = X>i θ + εi and Wi = Xi + Ui. The true covariates Xi were generated to be i.i.d. p-

variate Gaussian with mean 0 and covariance matrix Σ, the latter having entries Σij = ρ|i−j|

with ρ = 0.25. The p components of each measurement error vector Ui were generated to

be either i.i.d. Gaussian or Laplace with mean 0 and variance σ2
u, so that Ui has mean

0 and covariance matrix Σu = σ2
uIp×p. Two values were considered for the measurement

error variance, σ2
u ∈ {0.15, 0.30}. As SIMSELEX assumes normality of the measurement

error, the Laplace distribution setting was chosen in part to evaluate model robustness.
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The error components εi were simulated to be i.i.d. univariate normal, εi ∼ N(0, σ2
ε) with

σ2
ε = 0.2562. The sample size was fixed at n = 300, and simulations were done for the

number of covariates p ∈ {500, 1000, 2000}. Two choice of the true θ were considered, namely

θ1 = (2, 1.75, 1.5, 1.25, 1.0, 0, . . . , 0)> and θ2 = (1, 1, 1, 1, 1, 0, . . . , 0)>. Both cases have d = 5

non-zero coefficients. Under each simulation configuration considered, N = 500 samples were

generated.

The above simulation settings correspond to noise-to-signal ratios of approximately 15%

and 30% for each individual covariate. However, in multivariate space a metric such as

the proportional increase in total variability, ∆V = (det(ΣW)− det(Σ)) / det(Σ), is more

informative. When σ2
u = 0.15, if one were to only observe the d = 5 non-zero covariates,

∆V = 1.145, while for p = 500, this metric becomes ∆V = 6.79× 1033. When σ2
u = 0.3, the

equivalent values are ∆V = 3.132 for d = 5 and ∆V = 5.79×1062 for p = 500. The dramatic

increase of ∆V emphasizes the severe consequences of measurement error in high-dimensional

space.

In the simulation study, five different estimators were computed: the true lasso using the

uncontaminated X-data, the naive lasso treating the W -data as if it were uncontaminated,

the conic estimator with tuning parameters as proposed by Belloni et al. (2017), the corrected

lasso with the tuning parameter chosen based on 10-fold cross-validation, and SIMSELEX.

SIMSELEX used M = 5 equi-spaced λ values ranging from 0.01 to 2. For each λ, B = 100

sets of pseudodata were generated. The tuning parameter of the lasso was chosen using the

one-se rule and 10-fold cross-validation. For group lasso selection, ν = (20L)−1 was used as

step size with L the maximum eigenvalue of Λ>Λ/M . The lasso was implemented using the

glmnet function in MATLAB, see Qian et al. (2013). The group lasso was implementing

using our own code, available online with this paper. Extrapolation was performed using

both the quadratic and nonlinear means functions. Only results for quadratic extrapolation

are reported in the main paper, as this approach consistently resulted in smaller square
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estimation error that nonlinear extrapolation. The nonlinear means extrapolation results

can be found in section D of the supporting information.

The five estimators were compared using average estimation error, `2 =
{
N−1

∑N
i=1

∑p
j=1(θ̂

(i)
j − θj)2

}1/2

where θ̂
(i)
j denotes the estimate of θj obtained in the ith simulated dataset. Furthermore,

each method’s ability to recover the true sparsity pattern was evaluated using the average

number of false positive (FP) and false negative (FN) estimates across the N simulated

datasets. Note that the conic estimator does not set any estimates exactly equal to 0 and

cannot be used for variable selection. The simulation results for parameter vector θ1 are

presented in Table 1, while the results for θ2 are presented in Table C.1 in the supporting

information.

[Table 1 about here.]

As seen in Table 1, the naive estimator performs worst — it has `2 error often twice that of

either the conic or SIMSELEX methods. The conic estimator has comparable performance

to the SIMSELEX estimators, with SIMSELEX having slightly smaller `2 error for θ1, and

the conic estimator having slightly smaller `2 error for θ2. Both the conic and SIMSELEX

estimators have smaller `2 error than the corrected scores lasso. Interestingly, the `2 error

corresponding to the Normal and Laplace measurement error settings is quite similar. This

suggests that SIMSELEX is robust to at least moderate departures from normality (for the

simulation settings considered).

When considering the recovery of true sparsity pattern, the average number of false

negatives are negligible for all methods. For the average number of false positives, the

corrected lasso generally performs the worst, while SIMSELEX does not result in any false

positive for the parameter specifications considered. Overall, Table 1 demonstrates that

SIMSELEX can have performance superior to existing methods in the literature with regards

to the performance metrics considered.

It is also worth mentioning that SIMSELEX has lower average number false positive than
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the true estimator. We believe this can be attributed to these methods having different

FP-FN trade-off levels. When considering the Logistic and Cox Regression simulations in

Sections 3.2 and 3.3, it can be seen that SIMSELEX tends to have a higher average number

of false positives compared to the true estimator, while SIMSELEX still has lower average

number of false positives.

3.2 Logistic Regression

Two solutions for performing logistic regression in a high-dimensional errors-in-variables set-

ting have been proposed in the literature. The conditional scores lasso approach of Sørensen

et al. (2015) can be applied to GLMs. This method requires that the covariance matrix Σu

be known or estimable. Sørensen et al. (2018) proposed a Generalized Matrix Uncertainty

Selector (GMUS) for sparse high-dimensional GLM models with measurement error. The

GMUS estimator does not make use of Σu. These methods are reviewed in section B.2 of

the supporting information.

For the simulation study, data pairs (Wi, Yi) were generated using Yi|Xi ∼ Bernoulli(pi)

with logit(pi) = X>i θ. The true covariatesXi, measurement error components Ui, coefficient

vectors θ, and sample size were exactly as outlined for the linear model simulation, see Section

3.1. The true estimator, naive estimator, conditional scores lasso, and SIMSELEX estimator

using both quadratic and nonlinear extrapolation were computed for each simulated dataset

for p ∈ {500, 1000, 2000}. The GMUS estimator was only computed for the case p = 500;

Sørensen et al. (2018) note that GMUS becomes too computationally expensive for large

p. We attempted implementation for p = 1000 using the hdme package in R, but a run

time exceeding 12 hours for one sample demonstrated the impracticality of this method.

For the conditional scores lasso, Sørensen et al. (2015) recommend using an elbow method

to choose the tuning parameter. For the simulation study, an adapted elbow described in

section B.2 of the supporting information was used to select the tuning parameter. This

adapted method isn’t usable in practice and does tend to give over-optimistic results for the
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corrected scores approach than one is likely to otherwise obtain. The performance metrics `2

error, and average number of false positives (FP) and false negatives (FN) were calculated

to compare the estimators. The results for θ1 are presented in Table 2, while the results for

θ2 are presented in Table C.2 in the supporting information.

[Table 2 about here.]

Table 2 shows that in terms of `2 error, the SIMSELEX estimator always performs better

than the naive estimator. In many configurations, SIMSELEX has performance close to the

true estimator. The conditional scores lasso has the smallest `2 error of the methods that

control for measurement error, sometimes even outperforming the true estimator. We believe

this to be an artifact of how the tuning parameter is selected in the simulation study, and

does not correspond to “real world” performance. Furthermore, in terms of variable selection,

the conditional scores lasso has both the highest average number of false positives and

false negatives in all the considered settings. On the other hand, the SIMSELEX estimator

performs variable selection well. SIMSELEX has the lowest average number of false positives

in all the cases considered, and has only slightly higher average number of false negatives

than the true and naive estimator. In the case of p = 500, GMUS has larger `2 error than both

SIMSELEX and the conditional scores lasso. However, it has smallest average number of false

negatives among all the estimators and a slightly larger number of average false positive than

SIMSELEX. As in the linear model, performance of the estimators do not differ markedly for

the Normal and Laplace measurement error settings. Again, this suggests some robustness

to departure from the assumed normality of measurement error in SIMSELEX.

3.3 Cox Proportional Hazard Model

The Cox proportional hazard model is commonly used for the analysis of survival data.

It is assumed that the random failure time T has conditional hazard function h(t|X) =

h0(t) exp(X>θ) where h0(t) is the baseline hazard function. As survival data is frequently



14 Biometrics, 000 0000

subject to censoring, it is assumed that the observed data are of the form (Wi, Yi, Ii), i =

1, . . . , n, where Yi = min(Ti, Ci) with Ci being the censoring time for observation i, and

Ii = I(Ti < Ci) being an indicator of whether failure occurred in subject i before the

censoring time.

For the simulation study, the true covariates Xi and the measurement error Ui were

simulated as in the linear model simulation (see Section 3.1), but with only Normally dis-

tributed measurement error being considered. The survival times Ti were simulated using the

Weibull hazard as baseline, h0(t) = λTρt
ρ−1 with shape parameter ρ = 1 and scale parameter

λT = 0.01. The censoring times Ci were randomly drawn from an exponential distribution

with rate λC = 0.001. Two choice of the true θ were considered, θ1 = (1, 1, 1, 1, 1, 0, . . . , 0)>

and θ2 = (2, 1.75, 1.50, 1.25, 1, 0, . . . , 0)>. For θ1, the model configuration resulted in samples

with between 20% and 25% of the observations being censored, while for θ2, between 25%

and 30% of the observations were censored. The sample size was fixed at n = 300, and

simulations were done for number of covariates p ∈ {500, 1000, 2000}.

For the Cox model, implementation of SIMSELEX is much more computationally intensive

than the linear and logistic models. This can be attributed to computation of the generalized

lasso for the Cox model, see Section 3.5 of Hastie et al. (2015). As such, only B = 40 replicates

were used for each λ value in the extrapolation step of the SIMSELEX algorithm. It should

further be noted that, to the best of our knowledge, the Cox model with high-dimensional

data subject to measurement error has not been considered by any other authors. As such,

there is no competitor method for use in the simulation study. However, the model using the

true covariates not subject to measurement error can be viewed as a gold standard measure

of performance. Finally, the naive model was also implemented. The simulation results for

the case of θ1 are reported in Table 3, while the results for the case of θ2 are presented in

Table C.3 in the supporting information.

[Table 3 about here.]
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Table 3 shows that the SIMSELEX has a significantly lower `2 error than the naive estimator.

With regards to recovery of the sparsity pattern, SIMSELEX has negligible average number of

false positives in all the considered settings, while the naive estimator and the true estimator

respectively result in the selection of more than 10 and 2 false positives on average. Neither

the true nor the naive estimator results in false negatives, while the SIMSELEX estimator

has average number of false negatives around 0.05 for the case σ2
u = 0.15 and around 0.6 for

the case σ2
u = 0.3.

3.4 Computational Time

The nature of SIMSELEX may lead one to suspect that it is a computationally inefficient

method. We have investigated how SIMSELEX scales with increasing sample size and present

here a comparison with other existing methods for linear and logistic regression.

The bulk of SIMSELEX computational time is taken up by generating pseudodata and

model fitting in the simulation step. Even so, if algorithms exist for fast computation of

the true estimator, then implementation for the pseudodata is equally fast. Furthermore,

the generation of the psuedodata only requires the simulation of normal random vectors,

for which fast algorithms exist. Consider the linear model as an example. In the simulation

study, the median implementation time of the simulation step with 5 values of λ and B = 100

replicates per λ was approximately 350, 480, and 760 seconds for p = 500, 1000, and 2000

respectively. For logistic regression, thes equivalent times were 510, 680, and 1010 seconds.

The simulation step for the Cox survival model takes much longer time: Even with only

B = 40 replicates with p = 500, the median time is approximately 5380 seconds. For all

three models, the median implementation time for selection and extrapolation combined

was less than 270 seconds.

When compared to other estimation methods, SIMSELEX scales well with the dimension of

the problem. For the linear model, the conic estimator is slow to compute for a large number

of covariates. For p = 2000, the median computation time of the conic estimator was around
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6600 seconds, roughly six times longer than SIMSELEX for the same dimension size. The

corrected lasso tends to be faster than SIMSELEX for p = 500 and 1000, but takes roughly

the same amount of time for p = 2000. For logistic regression, the conditional scores lasso

takes less time to compute than the SIMSELEX procedure. However, the relevant tuning

parameter is selected using a subjective rule and not in a data-driven way. As previously

stated, computation of the GMUS estimator is does not scale well. Further details and

tabulated computation times can be found in section G of the supporting information.

4. Microarray Analysis

We analyzed an Affymetrix microarray dataset containing gene expression measurements of

144 favorable histology Wilms tumors. The data are publicly available on the ArrayExpress

website under access number E-GEOD-10320. In these Wilms tumors, the cancer cell’s nuclei

is not very large or distorted, so a high proportion of patients are successfully treated.

However, relapse is a possibility after treatment. It is of interest to identify any genes

associated with relapse. A total of 53 patients experienced a relapse, while 91 patients had no

relapse over a three year follow-up. Replicate data are available for each patient as multiple

probes were collected per patient. This allows for the estimation of gene-specific measurement

error variances. The analysis is performing after applying a logarithmic transformation.

To make our analysis comparable with that previously done by Sørensen et al. (2015),

data preprocessing was done as described by them. The raw data were processed using the

Bayesian Gene Expression (BGX) Bioconductor of Hein et al. (2005) creating a posterior

distribution for the log-scale expression level of each gene in each sample. For gene j in

patient i, the posterior mean µ̂ij was then taken as an estimates of the true gene expression

level.

Now, let µ̂j = (µ̂1j, . . . , µ̂nj)
> denote the estimated vector of gene expression levels for

gene j = 1, . . . , p for the n patients. Furthermore, let µ̄j = (1/n)
∑n

i=1 µ̂ij and σ̂2
j =
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(1/n)
∑n

i=1(µ̂ij − µ̄j)2 denote the estimated mean and variance of gene j. Standardized mea-

surements Wi = (Wi1, . . . ,Wip), i = 1, . . . , n were then calculated asWij = (µ̂ij − µ̄j)/σ̂j, i =

1, . . . , n, j = 1, . . . , p. To estimate Σu, it was assumed that measurement error is independent

of the patient’s true gene expression levels and that the associated variance is constant across

patients for a given gene. Let var(µ̂ij) denote the posterior variance of the estimated distribu-

tion of gene j in patient i. These estimates were then combined, σ̂2
u,j = (1/n)

∑n
i=1 var(µ̂ij),

and the measurement error covariance matrix associated with W was estimated by the

diagonal matrix with elements (Σ̂u)j,j = σ̂2
uj/σ̂

2
j , j = 1, . . . , p. Only the p = 2074 genes with

σ̂2
u,j < (1/2)σ̂2

j , i.e. estimated noise-to-signal ratio less than 1, were retained for analysis.

Using the data (Wi, Yi), i = 1, . . . , n, with Yi an indicator of relapse, four different

procedures were used to fit a logistic regression model to the data. These procedures are

a naive model with lasso penalty, the conditional scores lasso of Sørensen et al. (2015),

the SIMSELEX model, and a SIMEX model without variable selection. For the naive,

SIMSELEX and SIMEX models, 10-fold cross-validation using the one-standard-error rule

was used to select the tuning parameter. For SIMEX and SIMSELEX, a grid of 16 equally

spaced λ-values from 0.01 to 2 and B = 100 replicates were used in the simulation step.

The elbow method was used for tuning parameters selection in the conditional scores lasso.

SIMEX without selection identified 1699 out of 2074 genes for inclusion in the model. Though

many of the estimated coefficients are close to zero, 17 estimated coefficients exceed 0.1, and

a further 41 exceed 0.01. Few would consider the results from this analysis to be congruent

with a sparse model. Results of the other three analyses are in Table 4.

[Table 4 about here.]

The naive approach identified 26 non-zero genes, while conditional scores identified 13 non-

zero genes. SIMSELEX identified only 4 non-zero genes. Note that one of the genes chosen

by SIMSELEX was not chosen by the conditional scores method (although it was chosen

by the naive estimator). However, the magnitude of the estimated coefficients were much
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larger for SIMSELEX compared to the naive and conditional scores estimators. The large

number of genes selected by the naive and conditional scores approaches are potentially a

consequence of the false positive rates seen in the simulation studies. While SIMSELEX does

suffer from the occasional false negative, this rate was lower in our simulation studies than

the equivalent rate for the conditional scores lasso.

5. Discussion

The paper presents a modified SIMEX algorithm with a selection step for sparse models

estimation in high-dimensional settings with covariates subject to measurement error. This

SIMSELEX algorithm is explored in linear and logistic regression models as well as the

Cox proportional hazards model. Spline-based regression is considered in section E of the

supporting information. In the linear model, SIMSELEX has performance comparable to

the corrected lasso. In the logistic model, it has much better performance than the corrected

scores lasso. In the Cox model and spline-model settings, no other estimators have been

proposed in the literature. For these, it is shown that the method leads to much better

performance than a naive approach that ignores measurement error, and compares favorably

to estimators obtained using uncontaminated data.

It was noted that SIMSELEX requires the measurement error covariance matrix be known

or estimable. In our data application, an estimation method based on the BGX Bioconductor

of Hein et al. (2005) was used. The development and comparison of other methods for

estimating measurement error covariance matrices will be explored in future work. Further

work around reducing the number of false negatives in SIMSELEX will also be conducted.

For example, the group lasso used for variable selection provides an ordering for the inclu-

sion/exclusion of variables in the model (see, for example, Figure 1). As such, a decision

can be made beforehand to include an additional number of variables, say q, after selection.
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Thus, if selection recommends keeping p̂ variables, then the practitioner keeps p̂+q variables

for extrapolation. The performance of this idea was not explored here.

References

Apanasovich, T. V., Carroll, R. J., and Maity, A. (2009). Simex and standard error

estimation in semiparametric measurement error models. Electronic journal of statistics

3, 318.

Armstrong, B. (1985). Measurement error in the generalised linear model. Communications

in Statistics-Simulation and Computation 14, 529–544.

Belloni, A., Rosenbaum, M., and Tsybakov, A. B. (2017). Linear and conic programming

estimators in high dimensional errors-in-variables models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 79, 939–956.

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006). Measurement

error in nonlinear models: a modern perspective. CRC press.

Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric

measurement error models. Journal of the American Statistical association 89, 1314–1328.

Datta, A., Zou, H., et al. (2017). Cocolasso for high-dimensional error-in-variables regres-

sion. The Annals of Statistics 45, 2400–2426.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning,

volume 1. Springer series in statistics New York.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical learning with sparsity:

the lasso and generalizations. CRC press.

Hein, A.-M. K., Richardson, S., Causton, H. C., Ambler, G. K., and Green, P. J. (2005).

Bgx: a fully bayesian integrated approach to the analysis of affymetrix genechip data.

Biostatistics 6, 349–373.

Koul, H. L., Song, W., et al. (2014). Simulation extrapolation estimation in parametric

models with laplace measurement error. Electronic Journal of Statistics 8, 1973–1995.
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Figure 1: SIMSELEX illustration using microarray data (Section 4). Left figure: solid

and dashed lines represent the norms ||Γ̂j||2 of the selected and (some) unselected genes
respectively; the vertical dash-dot line is the one-se cross-validation tuning parameter. Right
figure: coefficients of selected genes are modeled quadratically in λ and then extrapolated to
λ = −1.
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Table 1: Comparison of estimators for linear regression with with the case of θ1 based on `2

estimation error, average number of false positives (FP) and false negatives (FN). Standard
errors in parentheses.

p Estimator σ2
u = 0.15 σ2

u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN
500 True 0.09 0.98 0.00 0.09 0.81 0.00 0.09 0.82 0.00 0.09 0.83 0.00

(0.02) (2.06) (0.00) (0.02) (1.56) (0.00) (0.02) (1.86) (0.00) (0.02) (1.65) (0.00)
Naive 0.73 1.36 0.00 0.74 0.99 0.00 1.11 1.48 0.00 1.12 1.12 0.00

(0.08) (3.3) (0.00) (0.08) (2.21) (0.00) (0.1) (3.29) (0.00) (0.1) (2.24) (0.00)
SIMSELEX 0.32 0.00 0.00 0.34 0.00 0.00 0.5 0.00 0.00 0.52 0.00 0.00

(0.1) (0.00) (0.00) (0.11) (0.00) (0.00) (0.14) (0.00) (0.00) (0.16) (0.04) (0.00)
Conic 0.37 - - 0.38 - - 0.52 - - 0.53 - -

(0.07) - - (0.06) - - (0.1) - - (0.1) - -
Corrected 0.43 2.3 0.00 0.44 1.76 0.00 0.62 2.74 0.00 0.63 2.1 0.00

(0.08) (5.27) (0.00) (0.08) (3.51) (0.00) (0.11) (4.93) (0.00) (0.11) (3.88) (0.00)
1000 True 0.09 1.27 0.00 0.09 1.06 0.00 0.09 1.01 0.00 0.09 1.06 0.00

(0.02) (2.55) (0.00) (0.02) (2.18) (0.00) (0.02) (2.04) (0.00) (0.02) (2.22) (0.00)
Naive 0.75 1.69 0.00 0.76 1.18 0.00 1.14 1.38 0.00 1.15 1.39 0.00

(0.08) (3.29) (0.00) (0.08) (2.72) (0.00) (0.1) (3.03) (0.00) (0.11) (3.16) (0.00)
SIMSELEX 0.33 0.00 0.00 0.35 0.00 0.00 0.51 0.00 0.00 0.53 0.00 0.00

(0.11) (0.00) (0.00) (0.12) (0.00) (0.00) (0.15) (0.00) (0.04) (0.16) (0.00) (0.04)
Conic 0.39 - - 0.4 - - 0.55 - - 0.56 - -

(0.07) - - (0.07) - - (0.1) - - (0.1) - -
Corrected 0.44 3.48 0.00 0.46 3.11 0.00 0.63 3.57 0.00 0.65 3.14 0.00

(0.09) (6.37) (0.00) (0.08) (6.26) (0.00) (0.12) (5.97) (0.00) (0.13) (5.26) (0.00)
2000 True 0.1 1.29 0.00 0.1 1.45 0.00 0.1 1.56 0.00 0.1 1.32 0.00

(0.02) (2.68) (0.00) (0.02) (3) (0.00) (0.02) (3.41) (0.00) (0.02) (2.62) (0.00)
Naive 0.77 1.76 0.00 0.78 1.59 0.00 1.17 1.89 0.00 1.17 2.06 0.00

(0.08) (3.52) (0.00) (0.09) (5.06) (0.00) (0.1) (4.57) (0.00) (0.11) (5.72) (0.00)
SIMSELEX 0.34 0.00 0.00 0.36 0.00 0.00 0.53 0.00 0.00 0.55 0.00 0.01

(0.1) (0.00) (0.00) (0.11) (0.00) (0.00) (0.15) (0.04) (0.00) (0.17) (0.00) (0.09)
Conic 0.41 - - 0.41 - - 0.59 - - 0.59 - -

(0.07) - - (0.07) - - (0.1) - - (0.11) - -
Corrected 0.45 4.91 0.00 0.47 3.88 0.00 0.64 5.42 0.00 0.66 3.83 0.00

(0.08) (7.66) (0.00) (0.09) (7.12) (0.00) (0.12) (8.11) (0.00) (0.13) (5.99) (0.00)
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Table 2: Comparison of estimators for logistic regression with with the case of θ1 based on `2

estimation error, average number of false positives (FP) and false negatives (FN). Standard
errors in parentheses.

p Estimator σ2
u = 0.15 σ2

u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN
500 True 2.62 0.39 0.23 2.61 0.39 0.23 2.61 0.54 0.25 2.59 0.54 0.25

(0.21) (2.54) (0.43) (0.21) (2.54) (0.43) (0.23) (3) (0.59) (0.2) (3) (0.59)
Naive 2.83 0.59 0.57 2.83 0.59 0.57 2.99 0.42 1.08 2.99 0.42 1.08

(0.22) (3.79) (1.03) (0.22) (3.79) (1.03) (0.23) (1.59) (1.6) (0.24) (1.59) (1.6)
SIMSELEX 2.65 0.01 0.65 2.63 0.01 0.68 2.73 0.00 1.38 2.74 0.00 1.57

(0.43) (0.09) (0.58) (0.39) (0.09) (0.61) (0.46) (0.00) (1.09) (0.45) (0.06) (1.19)
Cond Scores 2.36 7.02 1.15 2.33 7.02 1.15 2.58 5.67 1.7 2.53 5.67 1.7

(0.65) (9.77) (0.95) (0.61) (9.77) (0.95) (0.56) (7.94) (1.09) (0.57) (7.94) (1.09)
GMUS 2.67 0.21 0.21 2.87 0.21 0.21 2.75 0.66 0.22 2.74 0.66 0.22

(0.08) (0.52) (0.41) (0.07) (0.52) (0.41) (0.08) (0.98) (0.42) (0.08) (0.98) (0.42)
1000 True 2.65 0.36 0.26 2.64 0.36 0.26 2.64 0.61 0.3 2.64 0.61 0.3

(0.19) (1.38) (0.48) (0.21) (1.38) (0.48) (0.21) (3.38) (0.55) (0.21) (3.38) (0.55)
Naive 2.86 0.7 0.63 2.85 0.7 0.63 3.01 0.78 1.25 3.01 0.78 1.25

(0.22) (3.62) (1.11) (0.22) (3.62) (1.11) (0.24) (4.53) (1.74) (0.23) (4.53) (1.74)
SIMSELEX 2.67 0.00 0.72 2.65 0.00 0.71 2.76 0.00 1.59 2.77 0.00 1.61

(0.44) (0.06) (0.64) (0.41) (0.06) (0.64) (0.46) (0.00) (1.14) (0.42) (0.00) (1.21)
Cond Scores 2.44 8.82 1.18 2.46 8.82 1.18 2.62 7.53 1.75 2.64 7.53 1.75

(0.63) (11.22) (0.99) (0.66) (11.22) (0.99) (0.59) (11.2) (1.05) (0.57) (11.2) (1.05)
2000 True 2.66 0.75 0.33 2.65 0.75 0.33 2.65 0.89 0.35 2.65 0.89 0.35

(0.22) (3.7) (0.66) (0.21) (3.7) (0.66) (0.22) (3.39) (0.6) (0.23) (3.39) (0.6)
Naive 2.88 0.56 0.68 2.87 0.56 0.68 3.02 0.84 1.23 3.03 0.84 1.23

(0.2) (2.68) (1.1) (0.22) (2.68) (1.1) (0.23) (4.63) (1.71) (0.23) (4.63) (1.71)
SIMSELEX 2.70 0.01 0.78 2.68 0.01 0.80 2.77 0.00 1.76 2.80 0.00 1.79

(0.41) (0.08) (0.67) (0.42) (0.06) (0.68) (0.44) (0.04) (1.25) (0.44) (0.00) (1.20)
Cond Scores 2.52 12.04 1.29 2.52 12.04 1.29 2.75 10.58 1.85 2.71 10.58 1.85

(0.63) (14.38) (0.94) (0.65) (14.38) (0.94) (0.62) (15.59) (1.11) (0.61) (15.59) (1.11)
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Table 3: Comparison of estimators for Cox survival models for the case θ1 based on `2

estimation error, average number of false positives (FP) and false negatives (FN). Standard
errors in parentheses.

σ2
u p `2 FP FN

True Naive SIM-
SELEX

True Naive SIM-
SELEX

True Naive SIM-
SELEX

0.15 500 1.36 2.25 1.8 8.59 3.66 0.00 0.00 0.00 0.03
(0.15) (0.11) (0.23) (6.34) (3.99) (0.00) (0.00) (0.00) (0.18)

1000 1.41 2.27 1.82 10.8 4.77 0.00 0.00 0.00 0.05
(0.15) (0.11) (0.23) (7.63) (5.18) (0.00) (0.00) (0.00) (0.22)

2000 1.47 2.31 1.89 12.92 5.68 0.00 0.00 0.00 0.07
(0.15) (0.12) (0.24) (8.97) (6.32) (0.00) (0.00) (0.00) (0.26)

0.30 500 1.37 2.58 2.19 8.03 2.33 0.00 0.00 0.00 0.52
(0.16) (0.1) (0.21) (6.02) (3.09) (0.00) (0.00) (0.06) (0.51)

1000 1.43 2.6 2.22 10.31 3.24 0.00 0.00 0.00 0.55
(0.15) (0.09) (0.2) (7.6) (4.1) (0.00) (0.00) (0.00) (0.53)

2000 1.46 2.63 2.26 13.71 3.84 0.00 0.00 0.00 0.7
(0.16) (0.09) (0.19) (9.5) (4.97) (0.00) (0.00) (0.04) (0.5)
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Table 4: Gene symbols and estimated coefficients from the naive lasso, the conditional scores
lasso, and the SIMSELEX estimator applied to the Wilms tumors data. Genes selected by
SIMSELEX are printed in bold.

Gene Naive Conditional
scores

SIMSELEX

202016 at -0.2216 -0.0348 -0.7038
205132 at -0.1997 -0.2127 -0.6498
213089 at 0.2096 0.0575 0.6775
207761 at 0.0691 - 0.7399
209466 x at -0.0310 -0.2425
218678 at -0.1256 -0.1600

209259 s at -0.1038 -0.1599
209281 s at -0.0511 -0.1054
204710 s at -0.2004 -0.0958
202766 s at - -0.0740
208905 at - -0.0463
201194 at - -0.0448

211737 x at - -0.0279
203156 at -0.1090 -0.0128
213779 at 0.1142
201859 at -0.1087

208965 s at 0.1388
205933 at 0.0913
(11 more
non-zero
genes)

| · | < 0.06


