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A Illustrating SIMEX performance in a high-dimensional setting

In both Sections 1 and 2 of the main paper, it was mentioned that SIMEX does not perform well in

high-dimensional errors-in-variables models without suitably modifying the procedure. Specifically,

standard SIMEX inflates the number of estimated nonzero components considerably, even when

combined with a procedure such as the lasso. Here, a simulated example is presented to illustrate.

For the example, data pairs (Wi, Yi) were generated according to the linear model Yi = X>i θ+εi

with additive measurement error Wi = Xi +Ui. Both the true covariates Xi and the measurement

error components Ui were generated to be i.i.d. p-variate normal. Specifically, Xi ∼ Np(0,Σ),

with Σ having entries Σij = ρ|i−j| with ρ = 0.25, and Ui ∼ Np(0,Σu) with Σu = σ2uIp×p with

σ2u = 0.45. The error components εi were simulated to be i.i.d. univariate normal, εi ∼ N(0, σ2ε)

with σε = 0.128. The sample sizes was fixed at n = 300, and the number of covariates was p = 500.

The parameter vector was taken to be θ = {1, 1, 1, 1, 1, 0, . . . , 0} with s = 5 nonzero coefficients

and p− s = 495 zero coefficients.

For the simulation step of SIMEX, a grid of M = 13 equally spaced λ-values ranging from 0.2

to 2 were used. For each value of λ, a total of B = 100 sets of pseudo-data were generated. In

applying the lasso, the tuning parameter was chosen based on the one-standard-error rule based

on 10-fold cross-validation. The lasso was implemented using the glmnet package in R. For the

extrapolation step, a quadratic function was used.

The analysis of the simulated data shows that SIMEX applied to the lasso results in 174 nonzero

parameter estimates. Of the 169 false positives, 156 are fairly small (less than 0.001 in absolute

value), with 13 false positives being larger (greater than 0.001 in absolute value). Comparatively, a

naive application of the lasso (not correcting for measurement error) gives only 5 non-zero parameter

estimates. Implementing SIMEX, even when using a method such as the lasso that enforces sparsity,

can result in an inflated number of variables in the model.
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B A brief review of existing methodology

In Section 3 of the main paper, the SIMSELEX estimator is compared to several existing methods

for fitting errors-in-variables models in high-dimensional settings. For the linear model, SIMSELEX

is compared with the corrected lasso estimator of Sørensen et al. (2015) and the conic estimator

of Belloni et al. (2017). For the logistic model, the SIMSELEX estimator is compared with the

conditional scores lasso of Sørensen et al. (2015). These approaches are briefly reviewed in this

section.

B.1 Linear Model

The corrected lasso estimator of Sørensen et al. (2015) is the solution to the optimization problem

min
θ

L(θ) = ‖Y −Wθ‖22 − θ
>Σuθ

s.t. ‖θ‖1 ≤ R

where for p-dimensional vector x, ‖x‖1 =
∑p

j=1 |xj | and ‖x‖22 =
∑p

j=1 x
2
j . Here, R is a tuning

parameter that can be chosen based on cross-validation using an estimate of the unbiased loss

function. Specifically, if the data are partitioned into random subset P1, . . . ,PJ , each subset having

size n/J , let (W(Pj), Y(Pj)) denote the data in the jth partition and let (W(−Pj), Y(−Pj)) denote

the data excluding the jth partition. Also let θ̂j denote the estimated parameter vector based on

(W(−Pj), Y(−Pj)). Then the tuning parameter R can be chosen using cross-validation loss function

LCV (R) =

J∑
j=1

∥∥∥YPj −WPj θ̂j

∥∥∥2
2
−

J∑
j=1

θ̂>j Σuθ̂j .

The optimal tuning parameter R can be chosen either to minimize LCV , or according to the one

standard error rule (see Friedman et al. (2001)). Sørensen et al. (2015) prove that the corrected

lasso performs sign-consistent covariate selection in large samples.

The conic estimator of Belloni et al. (2017) is also the solution to an optimization problem,

min
θ,t
‖θ‖1 + λt

s.t

∥∥∥∥ 1

n
W>(Y −Wθ + Σuθ)

∥∥∥∥
∞
≤ µt+ τ, t ≥ 0, ‖θ‖2 ≤ t.

where for p-dimensional vector x, ‖x‖∞ = maxj=1,...,p |xj |. This method requires the selection of

three tuning parameters, here denoted µ, τ and λ. The optimal choices of these tuning parameters

depend on the underlying model structure, including the rate at which the number of nonzero model

coefficients increases with sample size. Belloni et al. (2017) do suggest tuning parameter values

for application. Furthermore, these authors also proved that under suitable sparsity conditions,

their conic estimator has smaller minimax efficiency bound than the Matrix Uncertainty Selection
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estimator of Rosenbaum et al. (2010). We are not aware of any comparison, numerical or otherwise,

of the corrected lasso estimator and the conic estimator. This comparison is presented as part of

our simulation study in Section 3.1 of the main paper.

B.2 Logistic Regression

For the logistic regression model, the SIMSELEX estimator is compared with the conditional scores

lasso estimator developed by Sørensen et al. (2015) and the Generalized Matrix Uncertainty Selector

(GMUS) developed by Sørensen et al. (2018). The conditional scores lasso estimator is computed

by solving the set of estimating equations

n∑
i=1

(
Yi − F

{
ηi −

1

2
θ>Σuθ

})(
1

Wi + YiΣuθ

)
= 0 subject to ‖θ‖1 ≤ R

where ηi = µ+ θ>(Wi + YiΣuθ) and F (.) is the logit function. Note that this is a system of p+ 1

estimating equations. Sørensen et al. (2015) also illustrate how the conditional scores lasso can be

applied to other GLMs. For the simulation studies in section 3.2 of the main paper, the tuning

parameter R is chosen to be 1.5
∥∥∥β̂naive∥∥∥

1
, where β̂naive denotes the naive lasso.

The GMUS estimator is defined as

β̂MU = arg min{‖β‖1 : β ∈ Θ}, where

Θ =

[
β ∈ Rp :

∥∥∥∥∥ 1

n

n∑
i=1

wij(yi − F (w>i β))

∥∥∥∥∥
∞

≤ λ+
δ√
n
‖β‖1

∥∥F ′(Wβ)
∥∥
2

]

where F ′(Wβ) = {F ′(w>1 β), . . . , F ′(w>n β)}>, with F ′(.) denotes the first derivative of F (.). The

tuning parameter λ is chosen to be equal to the tuning parameter when computing the naive lasso,

while the tuning parameter δ was chosen following the elbow rule. More specifically, a grid of

δ-values is chosen. For each value of δ in the grid, the GMUS is computed. Finally, the number of

non-zero coefficients is plotted as a function of R, and the optimal R is chosen as the point at which

the plot elbows i.e. starts to become flat. Note that finding this elbow for the GMUS is somewhat

subjective and the authors do not provide an automated way of performing this selection.

For the simulation study in Section 3.2 of the main paper, the tuning parameter δ was chosen

in a manner identical to the simulation study presented in Sørensen et al. (2015). First, N0 = 100

samples were simulated using the data generation mechanism outlined. For the jth simulated

dataset, let R = δ
∥∥∥θ̂naive∥∥∥

1
, where

∥∥∥θ̂naive∥∥∥
1

denotes the `1 norm of the naive lasso estimator. Let

(δ,NZj(δ)) denote the curve of the number of non-zero coefficients as a function of λ. These curves

were then averaged, resulting in curve (δ,NZ(δ)) where NZ(δ) = N−10

∑
j NZj(δ). The value of δ

used subsequently to evaluate the conditional scores lasso estimators in the simulation study was

the point at which the curve NZ(δ) elbows. For each given simulation configuration, a different

value of δ was calculated.
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Figure B.1: Elbow plots choosing tuning parameters in implementation of conditional scores lasso
estimator in the logistic regression simulation.

In the simulation study in Section 3.2 of the main paper, the GMUS estimator was computed

only for the case of p = 500. The elbow plots for the settings associated with Normal measurement

error were presented below. The tuning parameters in the simulation study with Laplace mea-

surement error were chosen to be the same as the chosen value in the similar setting with Normal

measurement error.

C Additional Simulation Results for Linear Regression, Logistic

Regression, and Cox Survival Model

This section presents the simulation results corresponding to the case of θ2 = (1, 1, 1, 1, 1, 0, . . . , 0).

All the other simulation configurations are the same as outlined in the Section 3 of the main paper.
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These results are discussed and interpreted in the main paper, with the tabulated summaries

included here for completeness.

Table C.1: Comparison of estimators for linear regression with with the case of θ2 based on `2
estimation error, average number of false positive (FP), and average number of false negative (FN)
across 500 simulations.

p Estimator σ2
u = 0.15 σ2

u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN
500 True 0.09 1.11 0.00 0.09 1.1 0.00 0.09 1.24 0.00 0.09 1.19 0.00

(0.02) (2.36) (0.00) (0.02) (2.55) (0.00) (0.02) (2.75) (0.00) (0.02) (2.62) (0.00)
Naive 0.48 1.38 0.00 0.73 1.35 0.00 0.48 1.1 0.00 0.73 1.36 0.00

(0.05) (2.92) (0.00) (0.07) (2.9) (0.00) (0.05) (2.3) (0.00) (0.07) (3.3) (0.00)
SIMSELEX 0.21 0.00 0.00 0.23 0.00 0.00 0.21 0.00 0.00 0.34 0.00 0.00

(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.11) (0.00) (0.00)
Conic 0.27 - - 0.34 - - 0.27 - - 0.34 - -

(0.04) - - (0.07) - - (0.04) - - (0.07) - -
Corrected 0.29 2.48 0.00 0.4 2.19 0.00 0.29 2.55 0.00 0.4 2.32 0.00

(0.05) (4.5) (0.00) (0.08) (3.85) (0.00) (0.05) (4.18) (0.00) (0.08) (4.09) (0.00)
1000 True 0.09 1.04 0.00 0.09 1.29 0.00 0.09 1.79 0.00 0.09 1.33 0.00

(0.02) (2.36) (0.00) (0.02) (2.74) (0.00) (0.02) (4.35) (0.00) (0.02) (3.33) (0.00)
Naive 0.5 1.78 0.00 0.75 1.24 0.00 0.5 1.79 0.00 0.75 1.63 0.00

(0.06) (5.09) (0.00) (0.07) (2.75) (0.00) (0.06) (4.47) (0.00) (0.07) (3.56) (0.00)
SIMSELEX 0.23 0.00 0.00 0.24 0.00 0.00 0.23 0.00 0.00 0.35 0.00 0.00

(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.1) (0.00) (0.00)
Conic 0.27 - - 0.37 - - 0.27 - - 0.37 - -

(0.04) - - (0.07) - - (0.04) - - (0.07) - -
Corrected 0.3 3.78 0.00 0.42 2.94 0.00 0.3 4.2 0.00 0.42 3.54 0.00

(0.06) (6.6) (0.00) (0.08) (5.53) (0.00) (0.06) (6.29) (0.00) (0.08) (5.93) (0.00)
2000 True 0.1 2.12 0.00 0.1 6.32 0.00 0.1 2.19 0.00 0.1 1.57 0.00

(0.02) (5.68) (0.00) (0.02) (10.95) (0.00) (0.02) (5.57) (0.00) (0.02) (3.61) (0.00)
Naive 0.51 1.87 0.00 0.77 6.12 0.00 0.51 2.01 0.00 0.77 1.64 0.00

(0.05) (4.7) (0.00) (0.07) (10.94) (0.00) (0.05) (4.52) (0.00) (0.07) (3.39) (0.00)
SIMSELEX 0.23 0.00 0.00 0.23 0.00 0.00 0.23 0.00 0.00 0.36 0.00 0.00

(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.11) (0.04) (0.00)
Conic 0.28 - - 0.38 - - 0.28 - - 0.38 - -

(0.04) - - (0.07) - - (0.04) - - (0.07) - -
Corrected 0.3 5.66 0.00 0.43 4.76 0.00 0.3 5.64 0.00 0.43 4.36 0.00

(0.05) (9.41) (0.00) (0.08) (9.62) (0.00) (0.05) (8.18) (0.00) (0.08) (6.5) (0.00)

5



Table C.2: Comparison of estimators for logistic regression with with the case of θ2 based on `2
estimation error, average number of false positive (FP), and average number of false negative (FN)
across 500 simulations.

p Estimator σ2
u = 0.15 σ2

u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN
500 True 1.75 0.32 0.56 1.75 0.32 0.56 1.75 0.28 0.53 1.75 0.28 0.53

(0.21) (2.17) (1.48) (0.21) (2.17) (1.48) (0.21) (1.49) (1.42) (0.21) (1.49) (1.42)
Naive 1.87 0.48 1.13 1.98 0.48 1.13 1.87 0.36 1.64 1.98 0.36 1.64

(0.22) (2.57) (1.98) (0.21) (2.57) (1.98) (0.22) (1.63) (2.21) (0.21) (1.63) (2.21)
SIMSELEX 1.77 0.01 0.93 1.81 0.01 0.92 1.77 0.00 2.25 1.90 0.00 2.39

(0.42) (0.11) (1.27) (0.43) (0.08) (1.23) (0.42) (0.00) (1.73) (0.34) (0.04) (1.76)
Cond 2.32 3.5 1.57 2.4 3.5 1.57 2.32 3.63 2.05 2.4 3.63 2.05

(0.67) (6.52) (1.19) (0.67) (6.52) (1.19) (0.67) (6.65) (1.24) (0.67) (6.65) (1.24)
GMUS 1.61 0.91 0.02 1.77 0.91 0.02 1.61 0.41 0.1 1.77 0.41 0.1

(0.08) (1.17) (0.13) (0.07) (1.17) (0.13) (0.08) (0.73) (0.3) (0.07) (0.73) (0.3)
1000 True 1.75 0.35 0.47 1.77 0.35 0.47 1.75 0.32 0.62 1.77 0.32 0.62

(0.18) (1.71) (1.32) (0.21) (1.71) (1.32) (0.18) (1.47) (1.56) (0.21) (1.47) (1.56)
Naive 1.89 0.52 1.23 1.99 0.52 1.23 1.89 0.46 2.05 1.99 0.46 2.05

(0.21) (2.29) (2.03) (0.2) (2.29) (2.03) (0.21) (3.18) (2.34) (0.2) (3.18) (2.34)
SIMSELEX 1.8 0.01 1.06 1.81 0.01 1.08 1.8 0.00 2.79 1.92 0.00 2.80

(0.4) (0.12) (1.35) (0.41) (0.13) (1.41) (0.4) (0.04) (1.76) (0.34) (0.00) (1.80)
Cond 2.46 4.83 1.7 2.43 4.83 1.7 2.46 3.99 2.19 2.43 3.99 2.19

(0.66) (8.76) (1.19) (0.68) (8.76) (1.19) (0.66) (7.22) (1.19) (0.68) (7.22) (1.19)
2000 True 1.78 0.56 0.57 1.76 0.56 0.57 1.78 0.52 0.66 1.76 0.52 0.66

(0.19) (3.02) (1.46) (0.21) (3.02) (1.46) (0.19) (3.25) (1.56) (0.21) (3.25) (1.56)
Naive 1.91 0.84 1.36 2.02 0.84 1.36 1.91 0.48 2.08 2.02 0.48 2.08

(0.21) (4.69) (2.09) (0.19) (4.69) (2.09) (0.21) (2.08) (2.33) (0.19) (2.08) (2.33)
SIMSELEX 1.83 0.00 1.19 1.83 0.00 1.35 1.83 0.00 3.03 1.96 0.00 3.07

(0.41) (0.00) (1.34) (0.37) (0.04) (1.56) (0.41) (0.00) (1.72) (0.30) (0.04) (1.75)
Cond 2.46 5.76 1.78 2.43 5.76 1.78 2.46 5.82 2.36 2.43 5.82 2.36

(0.65) (10.06) (1.22) (0.63) (10.06) (1.22) (0.65) (10.22) (1.22) (0.63) (10.22) (1.22)
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Table C.3: Comparison of estimators for Cox survival models for the case θ2 based on `2 estimation
error, average number of false positive (FP), average number of false negative (FN) across 500
simulations.

σ2u p `2 FP FN
True Naive SIM-

SELEX
True Naive SIM-

SELEX
True Naive SIM-

SELEX

0.15 500 0.88 1.32 1.03 3.92 2.65 0.00 0.00 0.00 0.00
(0.11) (0.09) (0.17) (3.93) (3.44) (0.00) (0.00) (0.00) (0.00)

1000 0.92 1.34 1.04 4.95 3.23 0.00 0.00 0.00 0.00
(0.11) (0.09) (0.17) (4.95) (3.76) (0.00) (0.00) (0.00) (0.00)

2000 0.95 1.37 1.08 5.23 3.63 0.00 0.00 0.00 0.00
(0.1) (0.09) (0.17) (5.15) (4.47) (0.00) (0.00) (0.00) (0.00)

0.30 500 0.89 1.54 1.22 3.64 2.03 0.00 0.00 0.00 0.08
(0.11) (0.08) (0.18) (3.89) (2.81) (0.00) (0.00) (0.00) (0.27)

1000 0.92 1.56 1.25 4.78 2.47 0.00 0.00 0.00 0.11
(0.11) (0.09) (0.19) (5.31) (3.61) (0.00) (0.00) (0.00) (0.31)

2000 0.96 1.58 1.27 5.29 3.13 0.00 0.00 0.00 0.17
(0.11) (0.08) (0.18) (5.65) (4.16) (0.00) (0.00) (0.00) (0.4)
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D Comparison of extrapolation functions for SIMSELEX

Several extrapolation functions for the SIMEX procedure have been proposed in the literature.

The quadratic function and nonlinear means function are used most frequently. In this section,

the performance of SIMSELEX when using either the quadratic or nonlinear means function in the

extrapolation step are compared. Web Table D.1 presents the mean and median `2 error across 500

simulations for both linear and logistic regression — the simulation configurations are as described

in Section 3.1 (linear regression) and Section 3.2 (logistic regression) of the main paper.

In the case of linear regression, the nonlinear extrapolation function results in a SIMSELEX

estimator with a smaller median `2 error, but a higher mean `2 error when compared to the

quadratic extrapolation function. Specifically, for small measurement error variance (σ2u = 0.15),

the extrapolation methods give very consistent results as measured by mean and median `2 error.

However, for large measurement error variance (σ2u = 0.3), there are some instances where the mean

`2 error for nonlinear extrapolation is much larger than for quadratic extrapolation.

In the case of logistic regression, the quadratic extrapolation function consistently outperforms

the nonlinear means function regardless of whether mean or median `2 error is used as criterion.

A closer inspection of the simulation results suggest one possible explanation for the superiority of

quadratic extrapolation: in many of the simulated datasets, the nonlinear means function results in

extrapolants very far from the true values. This results in the large mean and median `2 error values.

We attempted increasing the value of B, the number of pseudo-datasets used for the simulation step,

but this did not alleviate the problem. It might be possible that an increase in both the number

of λ values and the value of B can improve performance of the nonlinear extrapolation function,

but this becomes computationally demanding and seems unnecessary given the good performance

of quadratic extrapolation.

Table D.1: Monte Carlo mean and median `2 error of SIMSELEX estimator using nonlinear means
(NL) and quadratic (Quad) extrapolation function for linear and logistic regression.

Model p ME type σ2u = 0.15 σ2u = 0.30
Mean `2 Median `2 Mean `2 Median `2

NL Quad NL Quad NL Quad NL Quad

Linear 500 Normal 0.34 0.32 0.31 0.32 0.5 0.5 0.44 0.5
Laplace 0.37 0.33 0.31 0.32 0.55 0.51 0.47 0.52

1000 Normal 0.34 0.34 0.32 0.34 1.14 0.53 0.48 0.53
Laplace 0.33 0.34 0.32 0.34 0.52 0.51 0.46 0.51

2000 Normal 0.35 0.35 0.32 0.34 0.79 0.54 0.5 0.55
Laplace 0.92 0.36 0.34 0.36 0.58 0.55 0.5 0.54

Logistic 500 Normal 3.82 2.65 2.81 2.65 21.66 2.73 3.3 2.69
Laplace 8.28 2.67 2.82 2.64 6.02 2.76 3.31 2.69

1000 Normal 7.99 2.7 2.84 2.67 7.46 2.77 3.37 2.72
Laplace 18.46 2.63 2.81 2.64 5.63 2.72 3.33 2.68

2000 Normal 5.92 2.67 2.84 2.65 5.84 2.75 3.34 2.69
Laplace 4.28 2.69 2.84 2.65 5.97 2.79 3.38 2.74
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E SIMSELEX for Spline-Based Regression

This section provides implementation of SIMSELEX in the high-dimensional nonparametric regres-

sion setting and further demonstrates the flexibility of the procedure.

E.1 Spline Model Estimation

The proposed SIMSELEX algorithm can also be adapted to use for more flexible models such

as regression using splines. Assume that the data (Wi, Yi) are generated by an additive model

Yi =
∑p

j=1 fj(Xij) + εi with Wi = Xi + Ui and Ui having known covariance matrix Σu. Also

assume that E[Yi] = 0, i = 1, . . . , n. In practice, this can be achieved by centering the observed

outcome variable. Furthermore, each of the functions fj(x) is assumed sufficiently smooth so that it

can be well-approximated by an appropriately chosen set of basis functions. In this paper, the focus

will be on an approximation using cubic B-splines with K knots. This model will have p(K + 3)

regression coefficients that need to be estimated.

Now, assume that the true covariates Xi have been observed without measurement error. Let

φjk(x), j = 1, . . . , p, k = 1, . . . ,K+3 denote the resulting set of cubic B-spline basis functions where

the knots for the jth covariate have been chosen as the (100k)/(K+1)th percentiles, k = 1, . . . ,K, of

said covariate. The model to be estimated is then of the form Yi =
∑p

j=1

∑K+3
k=1 βjkφjk(Xij)+ εi. In

this setting, the jth covariate is selected if at least one of the coefficients βjk, k = 1, . . . ,K is nonzero.

Therefore, it is natural to delineate all the coefficients βjk into p groups, each corresponding to a

covariate and containing K + 3 parameters. The model parameters are estimated by minimizing

the penalized loss function

R(β) =
n∑

i=1

Yi − p∑
j=1

K+3∑
k=1

βjkφjk(Xij)

2

+ (1− α)κ

p∑
j=1

√√√√K+3∑
k=1

β2jk + ακ

p∑
j=1

K+3∑
k=1

‖βjk‖ . (1)

This loss function has been considered in Simon et al. (2013) for the sparse group lasso estima-

tor. Let β̂true denote the estimated coefficients from this model. The loss function (1) combines

the lasso and group lasso penalties. The tuning parameter α ∈ [0, 1] balances overall parameter

sparsity and within-group sparsity. While it is expected that only a few covariates will be selected,

the nonlinear effect of each selected covariate may require a large number of basis functions to

be accurately modeled. Therefore, strong overall sparsity but only mild within-group sparsity is

expected. As per Simon et al. (2013), α = 0.05 is used. The estimator of each function fj is

f̂ truej (x) =
∑K+3

k=1 β̂
true
jk φjk(x) for all j = 1, . . . , p.

Now, using the contaminated data Wi, a similar procedure can be followed to obtain the naive

estimator. Again, evaluate the knots of the model as equally spaced percentiles, this time of the

covariates contaminated by measurement error. The corresponding cubic B-spline basis functions

are denoted φWjk (x). The naive estimator β̂naive can be obtained by minimizing a function analogous

to (1), but with true data Xij replaced by contaminated data Wij in the loss function. The naive

9



estimator for function fj is f̂naivej (x) =
∑K+3

k=1 β̂
naive
jk φWjk (x) for all j = 1, . . . , p.

To compute the SIMSELEX estimator, for each of the added noise level λm, generate B pseu-

dodata W̃ (b)(λm), b = 1, . . . , B as before. Note that the same set of basis functions obtained for

the naive estimate is used. Then, the estimate β̂
(b)
jk (λm) for each set of pseudodata is obtained by

minimizing a function analogous to (1), but with true data Xij replaced by pseudodata W̃
(b)
ij (λm)

in the loss function. The estimates β̂
(b)
jk (λm) are averaged across B samples to obtain β̂jk(λm) for

each λm in the grid.

After the simulation step of SIMSELEX, the jth covariate is associated with K + 3 “paths”{
(λi, β̂j1(λi)), . . . , ...(λi, β̂j,K+3(λi))

}
, each of which needs to be extrapolated to λ = −1. This

is different from the parametric model settings considered in Section 3 of the main paper, where

each covariate j is associated with only one parameter path θj(λi) that needs to be extrapolated

to λ = −1. Therefore, the selection step for spline-based regression needs to be approached with

some care. Here, two different approaches for selection step are considered.

The first approach for selection applies a variation of the group lasso to all p(K+ 3) coefficients

βjk. This is done using a quadratic extrapolation function. Specifically, it is assumed that

β̂jk(λi) = Γ0jk + Γ1jkλi + Γ2jkλ
2
i + εijk, i = 1, . . . ,M, j = 1, . . . , p, k = 1, . . . ,K + 3

with εijk zero-mean error terms. With this approach, the jth covariate is zeroed out if all the

parameter estimates {Γ̂ijk}i=0,1,2, k=1,...,K equal zero. Applying the group lasso, the loss function

to be minimized is

R =

p∑
j=1

(
‖Θj −ΛΓj‖22 + ξ3 ‖Γj‖2

)
(2)

where

Γj =

Γ0j1 . . . Γ0jK

Γ1j1 . . . Γ1jK

Γ2j1 . . . Γ2jK

 , Θj =


β̂j1(λ1) . . . β̂jK(λ1)

...
...

β̂j1(λM ) . . . β̂jK(λM )

 , Λ =


1 λ1 λ21
...

...
...

1 λM λ2M

 ,
and ‖.‖2 denotes the Frobenius norm (matrix version of the `2 norm). This is a very natural

extension of the approach considered in Section 2.2 of the main paper. The tuning parameter

ξ3 can be chosen through cross-validation. Even though (2) is convex and block-separable, the

minimization is computationally very expensive due to the number of model parameters. As such,

an alternative approach intended to speed up computation was also considered.

The alternative approach considered for selection applies the group lasso not to each individual

coefficient, but to the norm of each group of coefficients βjk, k = 1, . . . ,K + 3 corresponding

to the jth covariate. This is motivated by noting that the norm of a group of coefficients will

only equal 0 if all the coefficients in the said group are equal to 0. More specifically, let β̂j(λi) =

[β̂j1(λi), . . . , β̂jK(λi)]
>, i = 1, . . . ,M , j = 1, . . . , p, and let η̂ij =

∥∥∥β̂j(λi)∥∥∥
q

denote the corresponding
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`q norm. The two scenarios considered are q = 1 and 2. The norm is modeled quadratically as

η̂ij = Γ0j + Γ1jλi + Γ2jλ
2
i + εij , i = 1, . . . ,M,

with εij zero-mean error terms. The jth covariate is not selected if all the elements of the estimated

vector (Γ̂0j , Γ̂1j , Γ̂2j) are equal to zero. The group lasso loss function to be minimized is

R̃ =
1

2

M∑
i=1

p∑
j=1

(
η̂ij − Γ0j − Γ1jλi − Γ2jλ

2
i

)2
+ ξ4

p∑
j=1

√
Γ2
0j + Γ2

1j + Γ2
2j . (3)

Equation (3) is convex and block-separable, and can be minimized efficiently through proximal

gradient descent methods. The tuning parameter ξ4 can be chosen through cross-validation.

Finally, if the jth covariate is chosen in the selection step, extrapolation is performed separately

on each βjk to get the SIMSELEX estimate for each coefficient, denoted by β̂ssxjk . Then, the

SIMSELEX estimate for each function fj is computed as f̂ sj (x) =
∑K+3

k=1 β̂
ssx
jk φ

W
jk (x).

E.2 Simulation

Data pairs (Wi, Yi) were generated according to the additive model Yi =
∑p

j=1 fj(Xij) + εi, and

Wi = Xi + Ui with f1(t) = 3 sin(2t) + sin(t), f2(t) = 3 cos(2π/3t) + t, f3(t) = (1 − t)2 − 4,

f4(t) = 3t, and fj(t) = 0, j = 5, . . . , p. The s = 4 non-zero functions have all been centered at 0.

The true covariates Xij were generated from a Gaussian copula model with correlation structure

Σij = 0.25|i−j|, see Xue-Kun Song (2000) for more details. The covariates marginal were then

rescaled to have a uniform distribution on [−3, 3]. The measurement errors Ui were generated to

be i.i.d. p-variate normal, Ui ∼ Np(0, σ
2
uIp), with Ip the p × p identity matrix. Two values of

σ2u were considered, σ2u = 0.15 and σ2u = 0.3, corresponding to 5% and 10% noise-to-signal ratios

for each individual covariate. Simulations were also done for number of covariates p ∈ {100, 500}.
Although the NSR look small in each covariate, recall from Section 3.1 of the main paper that

the change in total proportion of variability ∆V increases rapidly in multivariate space. For each

configuration, N = 500 samples were generated.

For each simulated dataset, the true, naive, and SIMSELEX estimators were computed. We

are unaware of any other method in the literature dealing with spline-based regression in the high-

dimensional setting when covariates are subject to measurement error. For each covariate, the

number of knots was chosen to be K = 6. As such, each function fj is modeled by K + 3 = 9 basis

functions. In the simulation step of SIMSELEX, B = 40 sets of pseudodata are generated for each

level of added measurement error. The function estimators are evaluated using integrated squared

error, ISE =
∑p

j=1

∫ (
f̂ij(x)− fij(x)

)2
dx, as well as the number of false positive (FP) and false

negative (FN) covariates selected.

Web Table E.1 compares the performance of the SIMSELEX estimator with alternative methods

of doing variable selection in the case of p = 100 and with σ2u = 0.15. Firstly, selection approach (2)

using individual models for all the coefficients βjk was implemented. Secondly, approach (3) was
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applied both for the `1 norm and for the `2 norm, calculated based on the groups of parameters

corresponding to specific variables. The table reports the MISE, the number of false positives (FP)

and false negatives, and also the average time (in seconds), all calculated for 500 simulated samples.

The average time was recorded based on running the simulations on one node (memory 7GB) of

ManeFrame II (M2), the high-performance computing cluster of Southern Methodist University in

Dallas, TX.

Table E.1: Comparison of SIMSELEX variable selection methods for spline regression with p = 100.

Selection MISE FP FN Time (second)

All coefficients 17.32 21.50 0.00 819.00
`1 norm 17.17 10.06 0.00 59.70
`2 norm 16.76 4.62 0.00 56.68

Considering the results in Web Table E.1, selection based on the `2 norm gives the best result,

while selection based on individually considering all the coefficients gives the worst results. The

latter also takes more than 14 times longer to compute (on average) than the `2 approach. The

`1 approach is comparable to `2 in terms of MISE and average computation time, but has a

much higher average number of false positive selections. Therefore, the SIMSELEX estimator with

selection using `2 norm for parameter groups is compared with the naive estimator. The results

are summarized in Web Table E.2.

Table E.2: Comparison of estimators for high-dimensional spline regression model based on esti-
mation error (MISE), average number of false positives (FP) and false negatives (FN). Standard
errors in parentheses.

σ2u Estimator p = 100 p = 500
MISE FP FN MISE FP FN

0.15 True 15.96 3.68 0.00 18.05 12.11 0.00
(2.99) (2.75) (0.00) (3.28) (6.47) (0.00)

Naive 37.19 9.67 0.00 47.62 16 0.00
(7.17) (5.51) (0.00) (8.41) (10.16) (0.00)

SIMSELEX 16.95 5.48 0.00 21.94 6.5 0.00
(4.63) (3.14) (0.00) (6.3) (3.84) (0.00)

0.30 True 15.96 3.68 0.00 18.05 12.11 0.00
(2.99) (2.75) (0.00) (3.28) (6.47) (0.00)

Naive 69.89 9.28 0.01 87.73 13.26 0.08
(12.31) (6.42) (0.12) (13.2) (10.84) (0.28)

SIMSELEX 38.51 3.74 0.03 54.41 4.06 0.17
(11.37) (2.77) (0.18) (14.15) (3.27) (0.39)

Web Table E.2 demonstrates that SIMSELEX has a significantly lower estimation error (MISE)

than the naive estimator in all the configurations considered. Particularly, in the case of σ2u = 0.15,

the SIMSELEX estimator has MISE close to the true estimator. In the case of σ2u = 0.3, compared

to the naive estimator, the SIMSELEX estimator reduces MISE significantly. For example, in
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the case of p = 500, the reduction in MISE resulting from using the SIMSELEX over the naive

estimator is more than 38%. Even so, it is clear that measurement error has a significant effect on

the recovery of the functions fj for the case σ2u = 0.3.

Regarding variable selection, the SIMSELEX estimator performs very well in the case of σ2u =

0.15. In this case, SIMSELEX is always able to select the true non-zero functions by having false

negatives equal 0 in all samples, while having only a slightly higher average number of false positives

than the true estimator with p = 100 and lowest average number of of false positives with p = 500.

In the case of σ2u = 0.3, SIMSELEX gives considerably fewer false positives on averages than both

the true and naive estimators. SIMSELEX does have the highest average number of false negatives

for this setting, but this is still below 0.5 in all the cases considered.

Web Figure E.1 shows plots of the estimators corresponding to the first, second, and third

quantiles (Q1, Q2, and Q3) of ISE for the naive estimator and the SIMSELEX estimator in the

case of σ2u = 0.15 and p = 500. The SIMSELEX estimator captures the shape of the functions

considerably better, especially around the peaks of f1 and f2. Particularly, in the case of σ2u = 0.15,

the SIMSELEX estimator is able to capture the shape of all the nonzero functions very well.

Comparable figures for the case σ2u = 0.3 and p = 500 are given in Web Figure E.2. As one

would anticipate there, the increase in measurement error variance results in poorer recovery of

the underlying functions. Even so, SIMSELEX has notably better performance than the naive

approach.

F Post-Selection SIMEX Estimator

When implementing SIMSELEX, a natural question is whether the performance of the method

can be improved by implementing standard SIMEX methodology after the variable selection step.

That is, a method of simulation–selection–simulation–extrapolation could be implemented. The

second simulation step is therefore implemented using only the selected variables, and no penalty

method is used since the number of variables in the model has already been reduced. This estimator

is referred as the post-selection SIMEX estimator. The section compares the performance of the

SIMSELEX and the post-selection SIMEX estimator in the linear and logistic regression settings.

The data were generated as outlined in Section 3.1 and Section 3.2 of the main paper. Only

the simulation configurations with Normal measurement error and the coefficients θ1 were consid-

ered. For the post-selection SIMEX estimator, the grid of added measurement error level λ in the

simulation step consists of 5 equally spaced values from 0.01 to 2 and B = 100 sets of pseudo-data

were generated for each value of λ (this corresponds to implementation of SIMSELEX). In the ex-

trapolation step, both the nonlinear means function and quadratic function were considered. The

estimators are compared based on `2 estimation error. The simulation results are presented below

in Table F.1 in the supporting information.

It can be seen that the post-selection SIMEX estimator gives smaller `2 estimation error than

the SIMSELEX estimator in all the considered settings. The gain is most considerable in the

13



−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

x

f

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

x

f

−3 −2 −1 0 1 2 3
0

5
10

x

f

−3 −2 −1 0 1 2 3

−
5

0
5

x

f

(a) (b) (c) (d)

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

x

f

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4
6

x

f

−3 −2 −1 0 1 2 3

0
5

10

x

f

−3 −2 −1 0 1 2 3
−

5
0

5

x

f

(e) (f) (g) (h)

Figure E.1: Curves Q1 ( ), Q2 ( ), Q3 ( ), and true function ( ) for the esimated
functions from the naive estimators (top) and the SIMSELEX estimators (bottom) corresponding to
p = 600 and σ2u = 0.15. For (a),(e): f1(x) = 3 sin(2x)+sin(x); for (b),(f): f2(x) = 3 cos(2πx/3)+x;
for (c), (g): f3(x) = (1− x)2 − 4; for (d), (h): f4(x) = 3x.
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Figure E.2: Curves Q1 ( ), Q2 ( ), Q3 ( ), and true function ( ) for the esimated
functions from the naive estimators (top) and the SIMSELEX estimators (bottom) corresponding to
p = 600 and σ2u = 0.30. For (a),(e): f1(x) = 3 sin(2x)+sin(x); for (b),(f): f2(x) = 3 cos(2πx/3)+x;
for (c), (g): f3(x) = (1− x)2 − 4; for (d), (h): f4(x) = 3x.

case of logistic regression, especially when large measurement error exists. The nonlinear and the

quadratic extrapolation function have roughly the same performance in the linear model, while the

quadratic function has better performance in the logistic model.

G Computation Time

Web Table G.1 presents the median computation times for the different estimators in the linear and

logistic models as considered in the simulation studies of Section 3 of the main paper. In the case of

the linear model, the median computation time for SIMSELEX increased by approximately 150%

when going from 500 to 2000 variables, whereas the corrected scores lasso increased by around

1500% and the conic estimator increased by around 1800%. For logistic regression, the median

computation time for SIMSELEX increased by 120%, while GMUS computation time increased by

over 5000%. As noted in Sørensen et al. (2018), GMUS is not feasible for implementation with

a large number of variables. The computation times for the conditional scores lasso for logistic

regression are misleading and appear overly optimistic; the computation time here is very low as

there is no sample-specific selection of tuning parameter taking place in the simulation study. In

practice, this will be done using the elbow method as discussed in section B.2.
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Table F.1: Comparison of SIMSELEX and post-selection SIMEX estimators using mean `2 error for
linear and logistic model. Nonlinear (Nonlin) and quadratic (Quad) extrapolation were considered.

σ2u p SIMSELEX Post-sel. SIMEX
Nonlin Quad Nonlin Quad

Linear 0.15 500 0.34 0.32 0.20 0.20
(0.24) (0.1) (0.07) (0.06)

1000 0.37 0.33 0.20 0.19
(0.65) (0.11) (0.07) (0.06)

2000 0.34 0.34 0.20 0.20
(0.31) (0.1) (0.07) (0.07)

0.30 500 0.50 0.50 0.30 0.28
(0.35) (0.14) (0.10) (0.09)

1000 0.55 0.51 0.30 0.28
(0.60) (0.15) (0.11) (0.10)

2000 1.14 0.53 0.3 0.28
(8.12) (0.15) (0.11) (0.10)

Logistic 0.15 500 2.64 3.20 1.05 0.90
(2.32) (0.47) (0.58) (0.39)

1000 6.42 3.20 0.99 0.88
(86.1) (0.47) (0.52) (0.38)

2000 2.61 3.21 1.07 0.95
(0.25) (0.44) (0.45) (0.36)

0.30 500 2.73 3.21 1.34 1.15
(0.42) (0.50) (1.16) (0.39)

1000 2.75 3.21 1.37 1.24
(0.28) (0.52) (0.54) (0.37)

2000 2.76 3.20 1.36 1.25
(0.22) (0.49) (0.54) (0.43)

Table G.1: Median computation time (in second) for different estimators. For the conditional score
lasso and GMUS it is the median time to generate a coefficient path with 25 values of the tuning
parameter.

Model p SIMSELEX Corrected /

Conditional

Conic GMUS

Linear 500 428 58 349 -

1000 631 264 888 -

2000 1064 1016 6597 -

Logistic 500 572 7 - 330

1000 798 15 - >4.5 hours

2000 1248 43 - >4.5 hours

Survival 500 5435 - - -

1000 7924 - - -

2000 10461 - - -
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