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Abstract

Sufficient dimension reduction (SDR) is a popular class of regression methods which aim
to find a small number of linear combinations of covariates that capture all the information
of the responses (a central subspace). The majority of current methods for SDR focus on
the setting of independent observations, while the few SDR techniques that have been de-
veloped for clustered data assume the linear transformation is identical across clusters. That
is, they do not allow for heterogeneity between clusters when it comes to the sufficient di-
mension reduction process. In this article, we introduce the concept of random effect central
subspaces, where cluster-specific central subspaces are assumed to be random following a
distribution on the Grassmann manifold. This random effects distribution is the image of an
exponential mapping from a Gaussian distribution on the tangent space of an overall fixed
effects central subspace, and characterized by a covariance matrix capturing the heterogene-
ity between clusters. We incorporate the concept of random effect central subspaces into
the principal fitted components model, and propose a two-stage algorithm for estimation and
prediction of the random cluster-specific central subspaces. We demonstrate the consistency
of the proposed estimators when the number of clusters grows while the cluster sizes remain
bounded. Simulation studies demonstrate the superior performance of our proposed approach
compared to both global and cluster-specific SDR methods. We apply the proposed method
to study the relationship between the life expectancy of women with socioeconomic vari-
ables across countries. Results show log income per capita, infant mortality, and inequality
primarily drive the two-dimensional overall fixed effects central subspace, although there is
considerable variability between countries in how their cluster-specific central subspaces are
driven by these predictors.
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sures
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1 Introduction

Sufficient dimension reduction (SDR, Ma and Zhu, 2013; Li, 2018) is to a class of statistical

methods that assume the outcome depends on covariates via a small number of their linear com-

binations. These linear combinations are known as sufficient predictors, and retain the full re-

gression information between the response and all the covariates, thereby overcoming the curse

of dimensionality. The number of linear combinations is often known as the structural dimension.

Since the pioneering works of Li and Duan (1989) and Li (1991), a vast literature has developed

on different approaches to SDR, from inverse-moment-based and regression-based methods (e.g.,

Li, 1991; Cook and Forzani, 2008), forward regression (e.g., Xia et al., 2002), to semiparametric

techniques. Much research has also been done to combine SDR with various aspects of statistical

inference, such as SDR with variable selection for high dimensional sparse dimension reduction

(e.g., Lin et al., 2018; Nghiem et al., 2023); we refer the reader to Ma and Zhu (2013); Rodrigues

et al. (2022) for overviews of the SDR literature.

The vast majority of the SDR methods in the literature focus on the setting of independent obser-

vations. By contrast, the adaptation of SDR to clustered data settings remains relatively under-

developed. Such settings are common in many disciplines including medical and social statistics

(Verbeke and Molenberghs, 2009) and ecological and environmental studies (Bjork et al., 2018),

where many scientific questions involve some degree of dimension reduction of the covariates. In

correlated data settings, a very common method of analysis involves fitting mixed effects models

or variations thereof (Verbeke and Molenberghs, 2009; Fitzmaurice et al., 2012), which com-

bine fixed effects that are identical across clusters with random effects whose effects vary from

one cluster to another. These random effects are assumed to come from some common (typi-

cally normal) distribution with a zero mean/location vector and a covariance matrix, the latter of

which characterizes the degree of heterogeneity across the clusters. Mixed effect models can thus
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be seen as a balance between a global fixed effects model that ignores all clustering/correlation

structures in the data, and a cluster-specific fixed effects model that ignores possible shared in-

formation across clusters.

Among the few research that have been done on SDR for clustered data, all have effectively

assumed a global fixed effects model approach to dimension reduction, i.e., the direction of the

linear transformation is identical across all the clusters. Bi and Qu (2015) and Xu et al. (2016)

employed a marginal estimation equation approach where working correlation matrices were

included to account for temporal correlations arising within clusters for longitudinal data, while

Hui and Nghiem (2022) proposed a finite mixture approach where the mixture proportions are

modeled as known function of sufficient predictors, and random effects are added to the mixture

means to account for within-cluster correlations. Such global fixed effects SDR is also assumed in

Pfeiffer et al. (2021) and Song et al. (2023), who developed methods for matrix-valued predictors

that are formed from the collection of all repeated measurements of covariates corresponding

to each cluster. We also note the connected literature on single index models and variations

thereof for clustered data (e.g., Pang and Xue, 2012; Tian and Qiu, 2023). All of these works

again assume a global fixed effects model approach to dimension reduction: the random effects

are a separate, independent component to the linear transformation of the covariates and thus to

the sufficient predictors. On the other hand, such an assumption of the same direction for the

linear transformation across all clusters may be restrictive, as it does not allow for heterogeneity

between clusters when it comes to the sufficient dimension reduction operation itself.

In this article, we introduce the idea of random effects sufficient dimensions reduction, where

heterogeneity across clusters of the dimension reduction operation is allowed by assuming the

linear transformation of the covariates for each cluster is itself drawn from a common distribution.

In turn, we have an overall fixed effects sufficient dimension reduction, and random cluster-
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specific sufficient dimension reduction representing deviations away from this. Like standard

mixed effects modeling, we characterize the degree of heterogeneity in the sufficient dimension

operation between clusters by a random effects covariance matrix.

One immediate challenge in defining random effects SDR is that the direction of the linear trans-

formation of the covariates is not unique, since it is invariant to any orthogonal rotation. Instead,

similar to other SDR techniques, the estimation target is the subspace spanned by the columns of

the linear transformation for each cluster, which in our setting is both the overall central subspace

and the cluster-specific central subspaces. Because all of these central subspaces are elements on

a Grassmann manifold, one approach to random effects SDR would be to define the distribution

on this manifold. To date however, only a few such distributions have been proposed in the litera-

ture, especially when the structural dimension exceeds one. These distributions are often defined

via another distribution on a Stiefel manifold, with notable examples being the matrix Bingham

and the matrix Langevin distribution (Chikuse, 2003b,a). On the other hand, these distributions

almost always contain intractable normalizing constants, making their parameter estimation, and

thus random effects SDR using this approach, computationally burdensome. Recently, some dis-

tributions have been proposed to overcome the issue of intractable normalizing constraints (e.g.,

Scealy and Wood, 2019, 2022), but they are only applicable when the structural dimension is one,

which is not usually the case for SDR.

To overcome the above challenge, we propose an alternative approach to random effects SDR

as follows. Instead of placing a distribution on a Grassmann manifold directly, we construct

the distribution of the cluster-specific central subspaces as the image of an exponential mapping

of a distribution defined on a tangent space of the Grassmann manifold (Srivastava and Klassen,

2016)constructed at an overall fixed effects central subspace. This modeling approach has the ad-

vantage that the tangent subspace is a vector space, meaning we can assume a random effects dis-
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tribution defined on the corresponding Euclidean space e.g., a matrix normal distribution with a

covariance matrix characterizing the heterogeneity of sufficient predictors between clusters. Fur-

thermore, we can leverage recent advances in Grassmann manifold computation (Zimmermann,

2017; Bendokat et al., 2020) to perform the exponential mapping efficiently. After defining a

distribution for cluster-specific central subspace in this manner, we employ a likelihood-based

inverse regression approach for SDR, specifically, the principal fitted components (PFC) model

of Cook and Forzani (2008).

We propose a two-stage estimation algorithm for fitting the proposed model, where we first use

a global fixed-effects SDR to estimate a parameter of the mean central subspace, and then apply

the Monte-Carlo Expectation Maximization algorithm (Wei and Tanner, 1990) to estimate the

remaining (identifiable) parameters, and predict the cluster-specific central subspaces. We prove

the consistency of the proposed estimators when the number of clusters goes to infinity, while

the cluster sizes can remain bounded. Simulation studies demonstrate the strong performance

of our proposed model for random effects SDR, compared to both a global fixed-effects PFC

that ignores the heterogeneity between clusters and a cluster-specific fixed-effects PFC model

that does not borrow strength across clusters. Finally, we apply the proposed model to perform

random effects SDR on a longitudinal dataset studying the relationship between the female life

expectancy and various socioeconomic variables across different countries.

The remainder of this article is organized as follows. Section 2 offers a brief overview of relevant

concepts and tools from differential geometry regarding the Grassmann manifold, and introduces

the concept of random effect central subspaces. Section 3 proposes a model for random effects

SDR, and a two-step procedure for parameter estimation. We prove the consistency of the pro-

posed estimators in Section 4. Section 5 compares the proposed model with the two fixed-effects

SDR models via simulation, while Section 6 discusses the selection of the structural dimension.

5



Section 7 presents an illustration of the proposed model on a longitudinal socioeconomic dataset,

while Section 8 offers some concluding remarks.

2 Overview and key concepts

We begin by reviewing some key concepts related to Grassmann manifold and tangent spaces,

before introducing the concept of random effects SDR.

2.1 Background on Grassmann manifold

A Grassmann manifold Gr(p, d) is the set of all linear subspaces with dimension d of Rp. One

way to represent a point on a Grassmann manifold is from a basis perspective (Bendokat et al.,

2020). That is, a subspace U ∈ Gr(p, d) is identified by a non-unique, semi-orthogonal matrix

U ∈ Rp×d, satisfying U⊤U = Id, whose columns form a basis for U . To simplify the notation

between a space and its semi-orthogonal matrix, we will write U = [U]. A Grassmann manifold

is often equipped with a Riemmann metric, which roughly speaking is an inner product defined

on the tangent space of the manifold. In more detail, given a subspace [U] ∈ Gr(p, d), the tangent

space of Gr(p, d) at [U], denoted as T[U] Gr(p, d), is the collection of all possible directions of a

curve on the manifold that passes through [U]. That is, T[U] Gr(p, d) = {V ∈ Rp×d|U⊤V = 0}

is the set of all matrices orthogonal to U. Equivalently, any matrix V ∈ T[U] Gr(p, d) can be

written in the form V = (Ip − UU⊤)A, where A is any arbitrary matrix in Rp×d. Importantly,

this tangent space is a vector space: for any two matrices V1, V2 ∈ T[U] Gr(p, d), we have

c1V1 + c2V2 ∈ T[U] Gr(p, d) for any two scalars c1 and c2. As such, we can embed the tangent

space with an inner product, Φ(V1, V2) = 2−1trace(V⊤
1 V2), which is known as a Riemann

metric of the Grassmann manifold (Zimmermann, 2017).
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Since the tangent space is a vector space, then we will define a probability distribution in this

space whose variability subsequently determines the need to variability of points on the manifold.

Furthermore, we will define a mapping between points on the tangent space and points on the

Grassmann manifold. For the latter, we employ the exponential mapping defined as follows:

given a point [U1] ∈ Gr(p, d) and a point V ∈ T[U1]
Gr(p, d), the exponential map Exp[U1]

transfer a point V ∈ T[U1]
Gr(p, d) to [U2] ∈ Gr(p, d). As shown in Bendokat et al. (2020), a

semi-orthogonal basis for [U2] is explicitly given by U2 = Exp[U1]
(V) = U1M + QN, where

QR = V is the QR decomposition of V, M = D cos(Θ)D⊤, and N = Φ sin(Θ)D⊤ where

ΦΘD⊤ is the singular value decomposition (SVD) for R. Note since V is orthogonal to U1,

then so is Q. Conversely, the inverse exponential mapping Exp−1 transfers a point [U2] ∈

Gr(p, d) to a point V ∈ T[U1]
Gr(p, d). The explicit formula for this is V = Exp−1([U2]) =

Q∗ arctan(Σ∗)D⊤ where Q∗Σ∗D⊤ is the SVD of (Ip − UU1)U2(U⊤
1 U2)

−1. In these above

formulas, the cosine, sine, and inverse tangent functions are applied point-wise to the diagonal

elements of corresponding matrices.

2.2 Random effects sufficient dimension reduction

Consider a set of n independent clusters, such that for cluster i = 1, . . . , n we let yij denote the

j-th measurement of the response for j = 1, . . . , mi, and Xij denote a corresponding vector of p

covariates. For each cluster, SDR implies that the response only depends on the covariates via a

small number of their linear combinations,

yij ⊥ Xij|X⊤
ij Γi; i = 1, . . . , n; j = 1, . . . , mi, (1)

where Γi ∈ Rp×d with d < p. Model (1) allows the directions Γi to potentially vary from cluster

to another, with the idea being that the Γi’s represent deviations from some overall direction
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Γ0, which we define formally later on. Without loss of generality, assume each Γi is a semi-

orthogonal matrix, ΓiΓ
⊤
i = Id for i = 1, . . . , n. Similar to standard SDR, only the subspaces

spanned by each Γi is unique and identifiable. We refer to [Γi] as the central subspace for the ith

cluster, which is a point on the Grassmann manifold Gr(p, d).

In model (1), if the spaces [Γi] are identical for all n clusters, then there is no heterogeneity

between clusters in terms of the sufficient dimension reduction operation i.e., [Γi] = [Γ0] for all

i. As reviewed in Section 1, to our knowledge all the current literature on SDR for clustered data

has been developed under such an approach. On the other hand, if the spaces [Γi] are assumed

to be completely different from another, then in practice one would identify the central subspace

for each cluster independently, and no information would be shared across clusters. In this case,

the concept of an overall direction [Γ0] which individual clusters deviate is not explicitly defined,

and there is no borrowing of strength across clusters in the dimension reduction operation.

As a balance between the above two then, and analogous to the formulation mixed models dis-

cussed in Section 1, we propose obtaining the cluster-specific central subspaces [Γi] from an

exponential mapping of an overall fixed effects central subspace [Γ0] via a random velocity vec-

tor Vi. That is, for i = 1 . . . , n,

Γi = Exp[Γ0]
(Vi), Vi ∈ T[Γ0] Gr(p, d). (2)

We assume a random effects distribution for the Vi’s, whose covariance matrix characterizes

the variability of central subspace among the clusters. Critically, since Vi ∈ T[Γ0] Gr(p, d), then

from Section 2.1 we have that Vi is orthogonal to Γ0, and so any multivariate distribution imposed

on Vi should only have a non-zero density in the complement subspace of [Γ0]. In this article,

we explore one such distribution that satisfies these requirements, namely the singular matrix-

valued normal (MN) distribution with zero mean vector and two covariance matrices Σ and Ω
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that characterize the covariance among the rows and columns of Vi, respectively. Specifically,

Vi ∼ MNp×d(0, Σ, Ω), where the dimensions of Σ and Ω are p × p and d × d, respectively.

The orthogonality between Vi and Γ0 implies that Σ is also orthogonal to Γ0, and Σ has rank at

most p − d. The joint density of Vi, defined on the subspace V⊤
i Γ0 = 0, is given by

p(Vi; Σ, Ω) =
exp

{
−1

2 tr
(
Ω−1V⊤

i Σ−Vi
)}

(2π)pd/2|Λ|1/2|Ω|1/2
, (3)

where Λ denotes an (p − d)× (p − d) diagonal matrix with elements containing the non-zero

eigenvalues of Σ, Σ− denotes the Moore-Penrose inverse of Σ, and tr(·) and | · | denote the trace

and determinant operators, respectively.

Based on the above random effects formulation, we have the following result, the proof of which

is given in the appendix.

Lemma 1. If the density function of Vi is symmetric about zero, then [E(Γi)] = [Γ0], where the

expectation is taken with regards to a uniform probability measure on Rp×d.

The above implies that by assuming a degenerate matrix-valued normal (MN) distribution, [Γ0]

is indeed the mean central subspace and thus represents an overall direction across all n clus-

ters.

As noted in Gupta and Nagar (1999), for any scalar s > 0 we have p(Vi; Σ, Ω) = p(Vi; sΣ, s−1Ω).

That is, the covariance matrices Σ and Ω are only identifiable up to a scale. Thus without loss of

generality, we set Ω to be a correlation matrix. In this article, we will restrict Ω = Id, meaning

that any two dimensions in the central subspace can vary independently from one another, and

the variability of the central subspace among the clusters is solely characterized by Σ. We leave

the exploration of more complex structures of Ω as an avenue of future research.

To conclude this section, we present a visualization of the variability of the cluster-specific cen-
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Figure 1: Visualization of random effect central subspaces based on the tangent space approach.
In each panel, the overall fixed effects central subspace [Γ0] is represented by the large red dot,
while the planes on the top row represent the tangent space T[Γ0]. Each point on the tangent plane
represents one Vi generated from a matrix-valued normal distribution MN(0, Σ, Id). Each green
point on the sphere represents the corresponding Γi from the exponential map defined by equation
(2). The left panel sets Σ1 = KΣ̃1K with Σ̃1 = 0.3I3and K = Ip − Γ0Γ⊤

0 . The right panel sets
Σ2 = KΣ̃2K where Σ̃2 has an exchangeable structure with variance 0.3 and covariance 0.15.

tral subspace using the approach described above, in the simplest case with d = 1 and p = 3 i.e.,

a one-dimensional central subspace representing dimension reduction from three dimensions. In

both panels of Figure 1, we set Γ0 = (1, 0, 0)⊤ and generate n = 50 points (clusters) Vi = KṼi,

where K = I3 − Γ0Γ⊤
0 and each Ṽi is sampled from the trivariate normal distribution N3(0, Σ̃).

This data generation process ensures each Vi is orthogonal to Γ0, and the corresponding covari-

ance for Vi is given by Σ = KΣ̃K. Each panel in the figure corresponds to one choice for Σ̃. The

corresponding Γi is obtained from applying the exponential map (2) to each generated Vi. We

can see that different covariances on the tangent space lead to different variability patterns in the

manifold, so the random effect covariance matrix Σ can be used (as a surrogate) to characterize

heterogeneity among the cluster-specific central subspaces.
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3 A random effects principal fitted components model

Based on the concept of random cluster-specific central subspaces introduced in the previous

section, we now formulate a method for performing random effects SDR. Consider the set of

observations {(Xij, yij); i = 1, . . . , n, j = 1, . . . , mi}, with N = ∑n
i=1 mi denoting the total

number of observations in the data, and recalling that the n clusters are assumed to be indepen-

dent. Given an explicit parametric form (matrix normal) for the random effects distribution of

the cluster-specific central subspaces, it is sensible to adopt a likelihood-based inverse-regression

model for sufficient dimension reduction here. We propose to leverage the principal fitted com-

ponents model (PFC) of Cook and Forzani (2008), such that for the i-th cluster we write

Xij|(yij, Γi) = µi + Γivijy + εij, εij ∼ Np(0, ∆), (4)

where µi ∈ Rp denotes the conditional mean vector for the i-th cluster, vijy ∈ Rd is an

(unknown) function of yij, and ∆ is a p × p unstructured covariance matrix. Based on (4),

the cluster-specific central subspace is spanned by [Θi] = ∆−1[Γi] As in Cook and Forzani

(2008); Cook and Li (2009); Bura and Forzani (2015) among others, when applying PFC we set

vijy = β
{

fyij − E
(
fyij

)}
, where β ∈ Rd×r has rank d ≤ min(p, r) and fijy ∈ Rr is a known

function of yij often chosen to be a reasonably flexible set of basis functions of yij e.g., piecewise

polynomials. Also, note the µi’s in (4) play the role of cluster-specific intercept terms, and are

treated as fixed parameters; this approach is similar to fixed effect models in econometrics (e.g.,

Hsiao et al., 2002).

Substituting our choice of vijy into (4) and combining with the developments in Section 2.2, we

now formally define our approach to random effects SDR, which we refer to as random effect
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PFC or RPFC,

Xij|(yij, Γi) = µi + Γiβfijy + εij, εij ∼ Np(0, ∆),

Γi = Exp[Γ0]
(Vi), Vi

iid∼ MN(0, Σ, Id); i = 1, . . . , n, (5)

where the εij’s are assumed to be independent of Γi. All the Γi’s are images of an exponential

map from a subspace [Γ0] on the Grassmann manifold. Furthermore, by Lemma 1 we have that

the overall fixed effects central subspace is given by [Θ0] = [E(Θi)] = ∆−1[Γ0]. Also, the

parameters β and ∆ in our formulation are constrained to be the same across clusters: while it

is possible to vary them by cluster, empirically we found that doing so leads to overfitting the

data and unstable fitting. This is perhaps not too surprising given with clustered data, the cluster

sizes mi’s are usually small relative to the number of clusters n. Besides, with RPFC our primary

aim is on estimating the overall central subspace [Θ0], the covariance matrix Σ characterizing

the heterogeneity between clusters, and predicting the random cluster-specific central subspaces

[Θi].

From equation (4), the marginal log-likelihood function of the RPFC model is given by

ℓ(Γ0, µi, β, Σ) =
n

∑
i=1

log

[∫ {
mi

∏
j=1

N(Xij; µi + Γiβfijy, ∆)

}
MN(Vi; 0, Γ, Id)dVi

]

=
n

∑
i=1

log ℓi(Γ0, µi, β, ∆, Σ),

where the integral is over all the points on the tangent space T[Γ0] Gr(d, p), and Γi = h(Γ0, Vi)

with h(·, ·) defined as in Section 2.1. Next, we establish a result regarding the likelihood func-

tion’s invariance to transformations of Γ0 and β.

Proposition 1. For any orthogonal matrix A ∈ Rd×d such that AA⊤ = A⊤A = Id, we have

ℓ(Γ0, µi, β, ∆, Σ) = ℓ(Γ0A, µi, A⊤β, ∆, Σ).

Proposition 1 implies that for the RPFC model, only the parameters µi, ∆, Σ are identifiable. On
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the other hand, although Γ0 is not identifiable its span [Γ0] is identifiable, since this span is invari-

ant to any orthogonal rotation Γ0A. Consequently, only the cluster-specific [Γi] is identifiable,

not the actual Γi. The coefficient β is also not identifiable, but this is often not a parameter of

interest in SDR.

3.1 Estimation for fixed d

We propose a two-stage procedure to fit the RPFC model in (5), assuming the structural dimen-

sion d is fixed; we come back to the issue of selecting d in Section 6. In the first stage, we

estimate [Γ0] by fitting a so-called global PFC model (GPFC) which ignores the clustering i.e.,

Xij|yij = µ̃ + Γ̃β̃fijy + ε̃ij, εij ∼ Np(0, ∆̃). That is, we maximize

ℓg(µ̃, Γ̃, β̃, ∆̃) = −N
2

log |∆̃| − 1
2

n

∑
i=1

mi

∑
j=1

(
Xij − µ̃ − Γ̃β̃fijy

)⊤
∆̃−1 (Xij − µ̃ − Γ̃β̃fijy

)
, (6)

the details of which can be found in Cook and Forzani (2008). Theorem 1 in Section 4 proves

that the maximum likelihood estimator [Γ̂GPFC
0 ] of Γ̃ is a consistent estimator for [Γ0], providing

a justification for this approach. To ease the notation, we write Γ̂GPFC
0 simply as Γ̂0. On the

other hand, note GPFC only consistently estimates [Γ0], but not the overall fixed effects central

subspace ∆−1[Γ0]. Moreover, equation 6 clearly does not offer predictions of the cluster-specific

central subspaces.

In the second stage of the estimation procedure, we begin by removing the cluster-specific inter-

cepts µi (which are nuisance parameters in the context of SDR) by subtracting each observation

from its cluster mean. This leads to a revised form of the RPFC model, Zij = Xij − X̄i =

Γiβhijy + ϵij where X̄i = m−1
i ∑n

j=1 Xij, hijy = fijy − m−1
i ∑mi

j=1 fijy, and the errors are de-

fined as ϵij = εij − m−1
i ∑mi

j=1 εij ∼ Np(0, (1 − m−1
i )∆) for i = 1, . . . , n and j = 1, . . . , mi.

Next, to form the likelihood of the centered observations Zij, observe that ∑mi
j=1 Zij = 0 and
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so it suffices to form the likelihood based on (mi − 1) observations. Furthermore, the con-

ditional covariance of any pair (Zij, Zij′) is −m−1
i ∆ for j, j′ = 1, . . . , mi and j ̸= j′. With

this in mind, let yi = (yi1, . . . , yimi)
⊤ and Zi be the p × (mi − 1) matrix whose jth col-

umn is given by Zij. Similarly, let Hi be the r × (mi − 1) matrix whose jth column is hijy.

It follows that, conditional on Γi and yi, the matrix Zi follows a matrix normal distribution

Zi|(yi, Γi) ∼ MNp×(mi−1)(ΓiβHi, ∆, Li), where Li = Imi−1 − m−1
i Jmi where Jmi is an mi × mi

matrix of ones.

In the second stage of the algorithm, we use a Monte-Carlo expectation-maximization (MCEM,

Wei and Tanner, 1990) algorithm to estimate the remaining parameters Ψ = {β⊤, vech(∆)⊤, vech(Σ)⊤}⊤

in the RPFC model. Write the complete data log-likelihood of the (centered) RFPC model, given

Γ̂0, as

ℓc(Ψ) =
n

∑
i=1

[log {MN(Zi; ΓiβHi, ∆, Li)}+ log {MN(Vi; 0, Σ, Id)}] =
n

∑
i=1

ℓci(Ψ),

where Γ̂0 is implicit in the construction of each Γi i.e., Γi = Exp[Γ̂0]
(Vi). The MCEM algorithm

iterates between the following two-steps:

E-step: Let Ψ(0) denote the estimates at the current iteration of the MCEM algorithm. Given

independence of the clusters, the Q-function is then defined as

Q(Ψ; Ψ(0)) = ∑n
i=1

∫
ℓci(Ψ)p(Vi; Zi, yi, Ψ(0)) dVi, where p(Vi; Zi, yi, Ψ(0)) generically de-

notes the conditional distribution of the random effects given the observed data and current esti-

mates. Like many applications of mixed effects models, the expectation in the Q-function does

not possess a closed form, and so we utilize Monte-Carlo integration instead to approximate

this. Suppose we sample T values Vt ∼ MN(0, Σ(0), Id); t = 1, . . . , T. In the simulation study

and application later on, we set T = 400. Then defining Γt = Exp[Γ̂0]
(Vt), we construct the
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weights

w̃(0)
it = exp

[
− mi

2
log |∆(0)| − p

2
log |Li|

− 1
2

tr
{

L−1
i

(
Zij − Γtβ(0)Hi

)⊤ (
∆(0)

)−1 (
Zi − Γtβ(0)Hiy

)} ]
,

and w(0)
it = (∑i=1 w̃(0)

it )−1w̃(0)
it , such that the w(0)

it ’s are normalized to sum to one for each

cluster. Following this, the Q-function above is approximated as

Q(Ψ; Ψ(0)) ≈
n

∑
i=1

T

∑
t=1

w(0)
it

[
log

{
MN(Zi; ΓtβHiy, ∆, Li)

}
+ log

{
MN(Vt; 0, Σ, Id)

}]
.

M-step: We update the remaining parameters in the RPFC model as Ψ(1) = arg maxΨ Q(Ψ; Ψ(0)),

and achieve this via a series of conditional updates. First, the update for ∆ can be straightfor-

wardly obtained in closed-form

∆(1) =
1

N − n

n

∑
i=1

T

∑
t=1

w(0)
it (Zi − Γtβ(0)Hiy)L−1

i (Zij − Γtβ(0)Hiy)
⊤.

Next, ∆(1), then from setting the derivative of the approximated Q-function with respect to β

equal to zero, we obtain

n

∑
i=1

T

∑
t=1

w(0)
it Γt⊤

(
∆(1)

)−1
ΓtβFiy =

{
n

∑
i=1

T

∑
t=1

w(0)
it Γt⊤

(
∆(0)

)−1
Giy

}
,

where Fiy = HiyL−1
i H⊤

iy and Giy = ZiL−1
i H⊤

iy. By recognizing this equation has the form

∑n
i=1 ∑T

t=1 AitβFiy = E, where Ait = w(0)
it Γt⊤

(
∆(0)

)−1
Γt and E = ∑n

i=1 ∑T
t=1 w(0)

it Γt⊤
(

∆(0)
)−1

G⊤
iy,

then we can equivalently write it as Ξvec(β) = vec(E) where Ξ = ∑n
i=1 ∑T

t=1 Fiy ⊗ Ait. It fol-

lows that vec(β(1)) = Ξ−1vec(E), and a closed-form update is obtained.

Finally, if Σ is not assumed to have additional structure besides being orthogonal to Γ0, then from

straightforward algebra we can show that maximizing the approximated Q-function leads to the

update Σ(1) = ∑n
i=1 ∑T

t=1 w(0)
it Vt(Vt)⊤. Otherwise, if Σ is structured and characterized by a
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set of parameters Φ, then we can update these parameters correspondingly. For instance, in the

simulation studies later on we consider settings where Σ = σ2K and K = Ip − Γ0Γ⊤
0 . In such

case, it is straightforward to show that the update for σ2 is given by

(σ2)(1) =
1

d(p − d)

T

∑
t=1

tr
(

w(0)
it K̂VtVt⊤

)
=

1
d(p − d)

T

∑
t=1

tr
{

w(0)
it

(
Ip − Γ̂0Γ̂⊤

0

)
VtVt⊤

}
.

We iterate between the Monte-Carlo E-step and M-step until convergence, which we can assess

(say) by successive changes in the marginal log-likelihood function, ℓ(Ψ|Γ̂0) = ∑n
i=1 ℓi(Ψ|Γ̂0),

where ℓi(Ψ|Γ̂0) = log{ f (Zi|Γ̂0, Ψ)} = log(
∫

MN(Zi; ΓiβHiy, ∆, Li)MN(Vi; 0, Σ, Id)dVi)

for i = 1, . . . , n, being smaller than some certain tolerance value e.g.,
∣∣∣ℓ(Ψ(1)|Γ̂0)− ℓ(Ψ(0)|Γ̂0)

∣∣∣ ≤
10−3. Note ℓ(Ψ|Γ̂0) is straightforwardly approximated using the proposed normalized weights in

the MCEM algorithm, ℓ(Ψ(0)|Γ̂0) ≈ ∑n
i=1 ∑T

t=1 w(0)
it . Let Ψ̂ = {β̂⊤, vech(∆̂)⊤, vech(Σ̂)⊤}⊤

denote the estimator of Ψ upon convergence of the two-stage estimation procedure. Then the

estimate of the overall fixed effects central subspace is then given by [Θ̂0] = ∆̂−1[Γ̂0].

After model fitting, we propose to predict the cluster-specific random effect central subspaces as

follows. For the i-th cluster, we first compute a prediction of Vi on the tangent space T[Γ0]Gr(p, d)

as the mean of the conditional distribution V̂i =
∫

Vi p(Vi; Xij, yi, Ψ̂). Note this can be easily

calculated as V̂i ≈ ∑T
t=1 w(∞)

it Vt, where Vt ∼ MN(0, Σ̂, Id) and w(∞)
it denotes the normalized

weights w(0)
it of the MECM algorithm evaluated at Ψ̂. We then obtain a prediction of the cluster-

specific central subspace as Γ̂i = ExpΓ̂0
(Ṽi) and [Θ̂i] = ∆̂−1[Γ̂i], for i = 1, . . . , n. It is possible

to construct other predictors of the cluster-specific central subspace by using alternative choices

of V̂i e.g., the mode or median of p(Vi; Xij, yi, Ψ̂). In our empirical exploration, we experimented

with several choices and found that using the mean of the conditional distribution tended to be

the most stable and accurate.
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4 Asymptotic Theory

In this section, we establish the consistency of the proposed estimators from Section 3.1 for

the identifiable parameters of the RPFC model. We focus on the situation when the number of

clusters n → ∞, and the cluster size mi is finite and bounded for all i = 1, . . . , n.

Let Ψ̃∗ = (Γ∗⊤
0 , β∗⊤, vech(∆∗)⊤, vech(Σ∗)∗⊤) denote the true parameter value of Γ0, β, ∆ and

Σ in (5). Then we first prove the consistency of [Γ̂0] from fitting the global PFC model in the first

stage of the estimation procedure. We require the following conditions.

Condition 1. Σ̂ f f = N−1 ∑n
i=1 ∑mi

j=1 fijyf⊤ijy → Σ f f , where Σ f f is a r × r positive definite

matrix, when N → ∞.

Condition 2. Σ̂xx = N−1 ∑n
i=1 ∑mi

j=1 XijX⊤
ij

p→ Σxx, where Σxx is a p × p positive definite

matrix when N → ∞.

The above two conditions are mild since they essentially require Xij and fyij to have finite

(marginal) variances.

Theorem 1. Let Γ̂GPFC
0 denote the maximum likelihood estimate of Γ̃ from the GPFC model i.e.,

obtained by maximizing equation (6). Assume Conditions 1 and 2 are satisfied. Then [Γ̂GPFC
0 ]

p−→ [Γ∗
0 ] as N → ∞.

Theorem 1 only requires the total number of observations N → ∞, which is satisfied when the

number of clusters n → ∞. We point out that only [Γ̂GPFC
0 ], i.e., the space spanned by Γ̂GPFC

0 ,

is consistent for [Γ̂0]. That is, the actual estimate Γ̂GPFC
0 converges to Γ∗

0A for some orthogonal

d × d matrix A. This result is somewhat analogous to how in the linear mixed effects model,

the ordinary least square estimator (which ignores the clustered nature of the data) is a consistent

(though statistically less efficient) estimator for the true fixed effects coefficients (Verbeke and
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Molenberghs, 2009).

Next, we establish consistency of the estimated covariance matrices Σ̂ and ∆̂ obtained from the

second stage of estimation procedure. Note consistency of ∆̂ is required for the consistency of the

estimated fixed effect central subspace. In the development below, and leveraging the result of

and discussion around Theorem 1 above, we will assume the true Γ∗
0 is known up to an orthogonal

rotation Γ∗
0A. Let Ψ∗ = (A⊤β∗, vech(∆∗)⊤, vech(Σ∗)⊤), and s = dim(Ψ∗) = dim(Ψ̃∗).

In this case, we will write the marginal log-likelihood (in the second stage) as ℓ(Ψ|Γ∗
0A) =

∑n
i=1 ℓi(Ψ|Γ∗

0A). Note the independence of the clusters, then without loss of generality, we

assume ℓ1(Ψ|Γ∗
0A) satisfies the following regularity conditions.

Condition 3. For any d × d orthogonal matrix A, the true parameter Ψ∗ is an interior point of a

compact parameter space, and ℓ1(Ψ|Γ∗
0A) is distinct as a function of Ψ.

Condition 4. For any d × d orthogonal matrix A and Ψ in an open set containing Ψ∗, the s × s

information matrix I(Ψ) with elements ιjk(Ψ) = E
(
∂2ℓ1(Ψ|Γ∗

0A)/∂Ψj∂Ψk
)

for j, k = 1, . . . , s

is positive definite with all its eigenvalues bounded away from zero and infinity.

Condition 5. For any d × d orthogonal matrix A for all Ψ in an open set that contains Ψ∗, the

third derivatives ∂3ℓ1(Ψ|Γ∗
0A)/∂Ψj∂Ψk∂Ψl exists, and there exists functions Mijk(Z) such that

|∂3ℓ1(Ψ|Γ∗
0A)/∂Ψj∂Ψk∂Ψl| ≤ Mijk(Z1), where EΨ∗{Mijk(Z)} < ∞ for j, k, l = 1, . . . , s.

These conditions are necessary to establish the following two results regarding the proposed

estimators, and are analogous to conditions often made when studying the asymptotic properties

of mixed models (e.g., Nie, 2007; Hui et al., 2017). Note in the SDR setting, since Γ∗
0 is only

identifiable up to an orthogonal rotation, then we need to impose conditions on any such possible

rotation.

Theorem 2. Assume Conditions 3-5 holds. If the cluster size satisfy mi ≥ 2 for all i = 1, . . . , n
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then it holds that ∆̂
p−→ ∆∗ and Σ̂

p−→ Σ∗ as n → ∞.

Theorem 2 establishes the consistency of the two covariance matrices that characterize the fixed

effect central subspace and the heterogeneity among clusters. Note the result only requires the

number of clusters n to diverge and each cluster to have at least two measurements; it does not

require each cluster size mi to diverge. This is in line with classical likelihood-based theory for

mixed effects models, where model parameters can be consistently estimated even if the cluster

sizes are bounded (e.g., Nie, 2007; Hui et al., 2017). The result also establishes the consistency of

the covariance matrix Σ̂, which is key to characterizing the heterogeneity of the random cluster-

specific central subspaces.

Corrolary 1. Assume Conditions 1-5 hold. Then ∆−1[Γ̂0]
p−→ [Θ∗

0 ] when n → ∞.

Corrollary 1 is a direct application of the Slutsky’s theorem, and guarantees consistent estimation

of the overall fixed effects central subspace.

5 Simulation study

We performed a numerical study to assess the finite performance of the RPFC model i.e., for

estimating the overall fixed effects central subspace, the variability of central subspaces across

clusters, and predicting the random cluster-specific central subspaces. We simulated independent

clustered data from the two inverse models as follows: for i = 1, . . . , n and j = 1, . . . , mi, we

first generated yij ∼ N(0, 1) and set ∆ to be an AR(1) correlation matrix with autocorrelation

parameter 0.5. Next, we generated Γi following (2), with Γ0 constructed from the QR decom-

position of a random p × d matrix whose elements are generated from the uniform distribution

between (−1, 1), and the p × d matrices Vi’s independently generated from the singular matrix

normal distribution MN(0, Σ, Id), where Σ = KΣ̃K and K = Ip − Γ0Γ⊤
0 . Finally, given Vi and
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Γ0, we simulated the covariates as

(M1) Xij = Γivyij + εij, vyij = yij + (1/2)y2
ij + (1/3)y3

ij; εij ∼ Np(0, ∆),

(M2) Xij = Γivyij + εij, vyij = [yij + (1/2)y2
ij + (1/3)y3

ij, yij]; εij ∼ Np(0, ∆).

Note the structural dimension for the overall and cluster-specific central subspaces is d = 1

and d = 2 for models M1 and M2, respectively, and is assumed to be known. In both models,

we set p = 7 covariates and considered two settings for the random effects covariance matrix,

Σ: (a) we set and assumed in the fitting process an isotropic structure, Σ = σ2K and σ2 ∈

{0.04, 0.10, 0.50}; (b) we generated Σ = KΣ̃K with three possible structures of Σ̃, namely a

diagonal form Σ̃ = 0.3Ip, an AR(1) form for Σ̃ with variance set to 0.3 and autocorrelation

parameter set to 0.5, and an exchangeable structure for Σ̃ where all diagonal elements are set

to 0.3 and all off-diagonal elements set to 0.2. For both models and settings, we then fitted the

RPFC model in (5) assuming the random effects covariance matrix to be unstructured i.e., no

assumption about Σ is made except the requirement ΣΓ0 = 0.

For each combination of models M1 and M2 and the two settings of Σ, the true mean and cluster-

specific central subspaces are given by [Θ0] = ∆−1[Γ0] and [Θi] = ∆−1[Γi], respectively. We

set the number of clusters to n ∈ {100, 500}, and for each n simulated the cluster sizes mi

randomly to be integers between 10 and 15 inclusive. We generated 200 simulated datasets per

simulation setting. For each simulated dataset, we compare the performance of RPFC with the

following two alternatives:

• Global fixed-effects PFC (GPFC) model: This method ignores the clustered nature of the

data, instead assuming the central subspace to be the same across all clusters and ap-

plying a single PFC model to the entire dataset. The estimator for both the overall cen-

tral subspace and all cluster-specific central subspaces is hence the same and given by

20



Θ̂GPFC
0 = Θ̂GPFC

i =
(
∆̂GPFC)−1

[Γ̂0], where we note Γ̂0 is given by 6. By construction,

GPFC does not produce estimators of random effect covariance matrix Σ.

• Separate fixed-effects PFC (SPFC) model: This method fits a separate PFC model to clus-

ter. That is, for i = 1, . . . , n we maximize

ℓi(µ̃i, Γ̃i, β̃i, ∆̃i) = −mi

2
log |∆̃i|

− 1
2

mi

∑
j=1

(
Xij − µ̃i − Γ̃i β̃ifijy

)⊤
∆̃−1

i
(
Xij − µ̃i − Γ̃i β̃ifijy

)
. (7)

Let ∆̂SPFC
i and Γ̂SPFC

i denote the resulting estimates for ∆̃i and Γ̃i, respectively. Then the

cluster-specific central subspace from SPFC is given by [Θ̂SPFC
i ] =

(
∆̂SPFC

i
)−1

[Γ̂SPFC
i ].

Furthermore, a reasonable estimator for the overall central subspace is given by the intrin-

sic sample mean of these estimates. That is, [Θ̂SPFC
0 ] = argmin[Θ0] ∑n

i=1 Φ(Θ̂SPFC
i , Θ0)

where Φ(·, ·) is the Riemann metric on the Grassmann manifold reviewed in Section 2.1.

Finally, an estimate of Σ for SPFC can be obtained by first performing an inverse exponen-

tial mapping (see Section 2.1) from [Θ̂SPFC
i ] to the tangent space of Gr(p, d) at [Θ̂SPFC

0 ].

Letting Ŵi denote the image of that map, then we have Σ̂SPFC = n−1 ∑n
i=1 ŴiŴ⊤

i .

For all three inverse regression estimators compared, we constructed fyij from polynomial bases

with degree r = 4 and centered them within each cluster such that ∑mi
j=1 fyij = 0. We assessed

performance using the following three measures: (1) for estimating the overall central subspace,

we calculated the Frobenius norm of the difference between the projection matrix formed from

the estimate, and the projection matrix formed from the corresponding true value. That is, for

each simulated dataset we computed ∥P(Θ̂0) − P(Θ0)∥F, where P(C) = C(C⊤C)−1C for

a generic matrix C, and ∥ · ∥F denotes the Frobenius norm; (2) for estimating the random ef-

fects covariance matrix, we computed ∥Σ̂ − Σ∥F; (3) for predicting the cluster-specific central

subspace, we computed the average Frobenius form n−1 ∑n
i=1 ∥P(Θ̂i)−P(Θi)∥F.

21



5.1 Results

When the random effect covariance Σ is (known to be) isotropic in structure, Table 1 demon-

strates that RPFC had the overall best performance. For estimating the overall central subspace

[Θ0], SPFC had the poorest performance, while when the clusters relative homogeneous (e.g.,

σ2 = 0.04) RPFC still produced a lower estimation error than GPFC. This latter result is inter-

esting because while both RPFC and GPFC use the same estimator for Γ0, the former estimates

the overall central subspace better due to its superior performance at recovering the residual co-

variance matrix ∆. When σ2 = 0.50, RPFC had worse performance than GPFC and SPFC when

n = 100, but its performance greatly improved with increasing n and tended to be similar to

GPFC for the two larger number of clusters tested. Turning to estimation of Σ, RPFC consis-

tently outperformed SPFC, and its estimation error decreased with increasing n while this does

not occur for SPFC. Finally, for predicting the cluster-specific central subspaces, RPFC consis-

tently outperformed SPFC especially when σ2 was small. This reflected the former’s capacity

to borrow strength across clusters, which in turn improved the overall performance at predicting

the [Θi]’s. When the amount of heterogeneity between clusters increased, RPFC was still able to

predict [Θi] better than SPFC, although the differences between the two methods became smaller.

Note the performance relating to prediction of the cluster-specific central subspaces does not tend

to decrease substantially when the number of clusters n increases: this is a consequence of the

cluster sizes mi being bounded as n grows in our simulation design.

In the second setting when the random effects covariance matrix Σ was misspecified and assumed

to be unstructured, Table 2 demonstrates that RPFC retains the best overall performance. Not

surprisingly, compared to the previous setting when Σ is (known to be) isotropic, the error from

estimating an unstructured Σ tended to be larger. The performance of RPFC depended on the

form of Σ̃: for estimating the mean central subspace, RPFC exhibited the best performance when
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Table 1: Simulation results for setting (a) with an isotropic random effects covariance matrix
Σ = σ2K. The methods compared include the random effects PFC (RPFC), global PFC (GPFC),
and separate PFC (SPFC) models. Performance is assessed in terms of estimating the overall
central subspace [Θ0], the random effects covariance matrix Σ̃, and predicting the cluster-specific
central subspaces [Θi]. In each case, the mean Frobenius error (averaged across the 200 simulated
datasets) is shown, while the corresponding standard errors is given in parentheses. The lowest
values for each setting in each row is highlighted.

[Θ0] Σ [Θi]
σ2 Model n RPFC GPFC SPFC RPFC SPFC RPFC SPFC

0.04 M1 100 0.25 (0.08) 0.34 (0.10) 1.27 (0.26) 0.01 (0.00) 0.40 (0.06) 0.74 (0.11) 1.15 (0.04)
500 0.12 (0.04) 0.28 (0.08) 1.14 (0.23) 0.01 (0.00) 0.40 (0.06) 0.71 (0.10) 1.14 (0.04)
1000 0.09 (0.03) 0.27 (0.07) 1.10 (0.21) 0.01 (0.00) 0.39 (0.05) 0.72 (0.09) 1.14 (0.04)

M2 100 0.83 (0.34) 0.82 (0.29) 2.46 (0.35) 0.03 (0.01) 0.45 (0.04) 1.08 (0.11) 1.52 (0.05)
500 0.41 (0.15) 0.52 (0.12) 2.45 (0.34) 0.02 (0.01) 0.46 (0.04) 1.04 (0.08) 1.52 (0.04)
1000 0.30 (0.10) 0.45 (0.11) 2.35 (0.41) 0.02 (0.01) 0.45 (0.06) 1.01 (0.11) 1.49 (0.09)

0.1 M1 100 0.40 (0.13) 0.62 (0.17) 1.35 (0.22) 0.04 (0.01) 0.31 (0.05) 0.77 (0.06) 1.17 (0.03)
500 0.22 (0.06) 0.57 (0.14) 1.23 (0.23) 0.03 (0.01) 0.32 (0.05) 0.75 (0.05) 1.17 (0.03)
1000 0.24 (0.25) 0.59 (0.21) 1.26 (0.35) 0.04 (0.01) 0.32 (0.05) 0.77 (0.12) 1.18 (0.09)

M2 100 1.25 (0.45) 1.25 (0.36) 2.44 (0.34) 0.08 (0.03) 0.39 (0.04) 1.25 (0.08) 1.55 (0.03)
500 0.68 (0.26) 0.89 (0.19) 2.41 (0.32) 0.04 (0.01) 0.39 (0.04) 1.20 (0.06) 1.55 (0.02)
1000 0.50 (0.18) 0.83 (0.14) 2.48 (0.35) 0.03 (0.01) 0.40 (0.04) 1.18 (0.05) 1.55 (0.02)

0.5 M1 100 2.04 (0.42) 1.79 (0.35) 1.82 (0.31) 0.61 (0.07) 0.81 (0.03) 0.85 (0.03) 1.21 (0.02)
500 1.72 (0.52) 1.65 (0.39) 1.74 (0.31) 0.53 (0.10) 0.80 (0.03) 0.84 (0.02) 1.20 (0.01)
1000 1.44 (0.52) 1.49 (0.35) 1.63 (0.30) 0.47 (0.11) 0.80 (0.03) 0.83 (0.01) 1.21 (0.01)

M2 100 2.52 (0.37) 2.32 (0.34) 2.51 (0.34) 0.76 (0.09) 0.83 (0.05) 1.47 (0.02) 1.59 (0.02)
500 2.31 (0.36) 2.29 (0.31) 2.51 (0.31) 0.69 (0.08) 0.82 (0.04) 1.47 (0.01) 1.59 (0.01)
1000 2.20 (0.34) 2.20 (0.31) 2.46 (0.31) 0.66 (0.07) 0.82 (0.04) 1.47 (0.01) 1.59 (0.01)

Σ̃ had an exchangeable structure, but for estimating the random effect covariance matrix Σ, RPFC

had the lowest estimation error when Σ̃ was diagonal in structure. The estimation errors for both

the mean central subspace and random effect covariance decreased noticeably when the number

of clusters n increased for RPFC, but not for SPFC. Finally, for predicting cluster-specific central

subspaces, RPFC again had consistently lower errors than SPFC across all three structures of Σ̃

tested.
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Table 2: Simulation results for setting (b) with an unstructured random effects covariance matrix
Σ. The methods compared include the random effects PFC (RPFC), global PFC (GPFC), and
separate PFC (SPFC) models. Performance is assessed in terms of estimating the mean central
subspace [Θ0], the random effects covariance matrix Σ̃, and predicting the cluster-specific central
subspaces [Θi]. In each case, mean average Frobenius error (averaged across the 200 simulated
datasets) is shown, while the corresponding standard errors is given in parentheses. The lowest
values for each setting in each row is highlighted.

[Θ0] Σ [Θi]
Σ̃ Model n RPFC GPFC SPFC RPFC SPFC RPFC SPFC

Diagonal M1 100 1.22 (0.44) 1.34 (0.37) 1.64 (0.32) 0.49 (0.13) 0.49 (0.06) 0.88 (0.03) 1.21 (0.02)
500 0.69 (0.22) 1.14 (0.29) 1.47 (0.25) 0.38 (0.04) 0.46 (0.05) 0.86 (0.01) 1.20 (0.01)

1000 0.54 (0.14) 1.10 (0.27) 1.44 (0.22) 0.36 (0.04) 0.45 (0.04) 0.86 (0.01) 1.20 (0.01)
M2 100 2.02 (0.38) 2.06 (0.31) 2.50 (0.34) 0.46 (0.08) 0.55 (0.07) 1.46 (0.03) 1.60 (0.02)

500 1.57 (0.44) 1.83 (0.31) 2.49 (0.33) 0.37 (0.06) 0.55 (0.06) 1.43 (0.02) 1.59 (0.01)
1000 1.28 (0.37) 1.66 (0.29) 2.43 (0.34) 0.33 (0.05) 0.55 (0.07) 1.42 (0.02) 1.59 (0.01)

AR(1) M1 100 1.14 (0.42) 1.37 (0.39) 1.55 (0.30) 0.79 (0.19) 0.79 (0.08) 0.99 (0.04) 1.24 (0.02)
500 0.63 (0.21) 1.22 (0.33) 1.40 (0.27) 0.69 (0.14) 0.79 (0.06) 0.99 (0.03) 1.24 (0.01)

1000 0.52 (0.15) 1.19 (0.32) 1.33 (0.23) 0.70 (0.16) 0.79 (0.06) 0.99 (0.03) 1.23 (0.01)
M2 100 1.98 (0.40) 2.09 (0.37) 2.50 (0.32) 0.68 (0.13) 0.74 (0.09) 1.52 (0.03) 1.63 (0.02)

500 1.49 (0.46) 1.83 (0.37) 2.45 (0.32) 0.62 (0.13) 0.74 (0.09) 1.49 (0.03) 1.62 (0.01)
1000 1.24 (0.42) 1.76 (0.35) 2.49 (0.34) 0.60 (0.12) 0.75 (0.09) 1.47 (0.03) 1.62 (0.01)

Exchangeable M1 100 0.93 (0.41) 1.38 (0.38) 1.52 (0.32) 1.16 (0.49) 1.27 (0.22) 0.99 (0.07) 1.23 (0.02)
500 0.55 (0.20) 1.31 (0.34) 1.34 (0.25) 1.07 (0.54) 1.28 (0.20) 0.99 (0.08) 1.23 (0.02)

1000 0.45 (0.19) 1.23 (0.34) 1.25 (0.21) 1.07 (0.54) 1.27 (0.21) 0.99 (0.08) 1.23 (0.01)
M2 100 1.74 (0.43) 1.99 (0.38) 2.44 (0.34) 1.02 (0.34) 1.09 (0.27) 1.48 (0.06) 1.62 (0.02)

500 1.32 (0.39) 1.90 (0.34) 2.50 (0.34) 0.96 (0.35) 1.11 (0.25) 1.43 (0.07) 1.60 (0.02)
1000 1.07 (0.39) 1.77 (0.39) 2.44 (0.36) 0.92 (0.36) 1.11 (0.26) 1.42 (0.07) 1.60 (0.02)

6 Selecting the structural dimension

For the standard PFC model without random effects, Cook and Forzani (2008) proposed to select

the structural dimension d by either a likelihood ratio test or via an information criteria. In this

article, we adopt the latter approach when it comes to selecting d for RPFC (see also Ma and

Zhang, 2015; Luo and Li, 2021, for examples of where information criteria are employed to

select the structural dimension in SDR). In particular, we propose two computationally efficient

approaches that allow for the selection of d to be made prior to fitting the (second stage of the)

RPFC model.

In the first approach, since the structural dimension is equal to the dimension of [Γ̂0], which
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is estimated via a GPFC model in the first stage of the estimation procedure in Section 3.1,

we consider formulating an information criterion directly from this GPFC model. Let w ∈

{0, 1, . . . , min(r, p)} be a candidate for d. Then after applying GPFC model with this candidate

choice, let ℓg(w) = ℓg(w; µ̂GPFC, Γ̂GPFC, β̂GPFC, ∆̃GPFC) be the corresponding value of the max-

imized log-likelihood function in (6). Noting the corresponding number of parameters involved

is h(w) = p(p + 3)/2 + rw + w(p − w), we construct an information criterion of the form

−2ℓg(w) + τh(w) where we consider the model complexity as τ = 2 or τ = log(N) corre-

sponding to the global Akaike information criterion (GAIC) and the global Bayesian information

criterion (GBIC) respectively. We select d that minimizes either GAIC or GBIC.

In the second approach, by noting that the structural dimension is the same across all clusters in

the RPFC model, we consider selecting d via the SPFC model discussed in Section 5. Specif-

ically, after fitting SPFC with a dimension candidate w, let ℓi(w; µ̂SPFC
i , Γ̂SPFC

i , β̂SPFC
i , ∆̂SPFC

i )

denote the corresponding value of the maximized log-likelihood function for the i-th cluster i.e.,

the maximized value of (7). Then an information criterion for the i-th cluster can be defined as

−2ℓi(w) + τih(w), and we select d by minimizing ∑n
i=1 {−2ℓi(w) + τih(w)}. As in the first

approach, we consider a specific Akaike information criterion (SAIC) by setting all τi = 2, and

a specific Bayesian information criterion (SBIC) by setting all τi = log(mi).

To reiterate, we adopt these methods to select d given their computational efficiency: instead of

fitting the RPFC model to each candidate d using the two-stage estimation procedure outlined

in Section 3.1, we select d using either the GPFC and SPFC models, which are computationally

very scalable to fit.

To assess the finite sample performance of the above procedure, we conduct a simulation study

where clustered data were generated from the two inverse regression models as in Section 5,

but focusing on the second setting where the random effects covariance matrix Σ is assumed
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Figure 2: Proportion of 500 simulated datasets where the proposed information criteria methods
selected the correct structural dimension for the RPFC model. The top and bottom panels corre-
spond to models M1 and M2, whose true d equals 1 and 2 respectively.

to be unstructured but takes on one of three possible forms (diagonal, an autoregressive form,

and an exchangeable structure). Recall the true structural dimension of models M1 and M2 is

d = 1 and 2, respectively. Figure 2 shows that SAIC exhibits the best performance among the

four considered criterion for selecting d. It is also the only method whose performance tended

to improve when the number of clusters n increases. The two information criteria derived from

the GPFC model exhibited poor performance, possibly because GAIC and GBIC are constructed

from a model that ignores the heterogeneity among clusters and thus effectively underfits the data.

Finally, the SBIC consistently chose d̂ = 1, meaning its model complexity penality was likely

too severe. We leave theoretical investigation of the proposed information criteria for selecting d

in the RPFC model as an avenue for future research.
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7 Application

We applied RPFC to perform random effects sufficient dimension reduction on socioeconomic

data extracted from the Gapminder database. Briefly, the data contain multiple socioeconomic

variables of n = 117 countries collected in the years 1990–2015, and are available at https:

//open-numbers.github.io/. In this analysis, we focused on modeling the relationship

between life expectancy of women across the countries as a function of p = 6 predictors: X1

= log income per capita, X2 = sex ratio i.e., number of females per 100 males across all age

groups, X3 = infant mortality rate per 1000 new births, X4 = emissions consumption per person,

X5 = the average children per woman, and X6 = income inequality via Gini index. We treat each

country as an independent cluster, with the number of repeated measurements mi ranging from

21 to 26.

Let yij and Xij denote the j-th measurement for the life expectancy of women, and for the six

predictors, of the i-th country respectively. Using SAIC, the number of structural dimensions was

chosen to be d̂ = 2. Applying RPFC with this choice produced the resulting semi-orthogonal

basis matrix characterizing the estimate of the overall fixed effects subspace

Θ̂⊤
0 =


−0.993 −0.047 0.055 0.007 0.044 −0.086

0.114 −0.216 0.576 0.084 0.100 −0.769

We see that across all clusters/countries, the first sufficient predictor is influenced mostly by log

income per capita, and the second sufficient predictor is primarily driven by infant mortality and
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income inequality. RPFC produced an estimated random effects covariance matrix as

Σ̂ =

X1 X2 X3 X4 X5 X6



X1 0.004 −0.001 −0.002 0.000 0.004 0.004

X2 −0.001 0.004 0.005 0.000 −0.008 −0.001

X3 −0.002 0.005 0.031 −0.000 −0.050 −0.002

X4 0.000 0.000 −0.000 0.002 −0.000 0.011

X5 0.004 −0.008 −0.050 −0.000 0.080 0.002

X6 0.004 −0.001 −0.002 0.011 0.002 0.060

.

Examining its diagonal elements, it is interesting to note that infant mortality (X3), children

per woman (X5), and income inequality (X6) exhibited the largest values, suggesting they were

responsible for driving heterogeneity among countries in terms of the cluster-specific central

subspaces. To further study the extent of this heterogeneity, we predicted the random cluster-

specific central subspaces for each country given by RPFC, and summarized this by reporting the

importance of each predictor for each subspace based on the corresponding diagonal elements of

the estimated projection matrix. That is, let [Θ̂i] = ∆̂−1[Γ̂i] denote the prediction of the cluster-

specific central subspace for the i-th country. We then computed the p × p projection matrix

P(Θ̂i) and use its diagonal elements to evaluate the importance of each covariate (across both

structural dimensions) for the i-th country. Note each diagonal element of a projection matrix is

between zero and one, and the higher the value the more important a covariate is (see also Tan

et al., 2018; Nghiem et al., 2023, for examples of this metric’s usage elsewhere in SDR).

Figure 3 displays the resulting importance of each predictor for select countries using RPFC,

as well as the corresponding variable importance for the overall fixed effects central subspace

(bottom row). Consistent with the estimated Θ̂0 above, the cluster-specific central subspaces
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0.999 0.056 0.190 0.000 0.042 0.713

0.995 0.011 0.742 0.000 0.247 0.004

0.411 0.025 0.264 0.013 0.753 0.534

0.994 0.108 0.334 0.001 0.000 0.563

0.968 0.001 0.159 0.067 0.778 0.026

0.977 0.003 0.092 0.003 0.025 0.900

0.960 0.023 0.062 0.000 0.924 0.031

0.999 0.020 0.251 0.016 0.000 0.714

0.998 0.082 0.323 0.001 0.595 0.002

1.000 0.034 0.135 0.003 0.819 0.009
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0.524 0.293 0.390 0.039 0.166 0.588

0.998 0.049 0.335 0.007 0.012 0.599Mean

Benin

Brazil

Brunei

Switzerland

Chile

Costa Rica

Honduras

Ireland

Kazakhstan

Korea, Rep.

Laos

Sri Lanka

Malta

Senegal

Slovak Republic

Trinidad and Tobago

Zambia

Log Income Sex Ratio Infant mortality Emissions Children per woman Inequality
Variable

C
en

tr
al

 S
ub

sp
ac

es

0.25
0.50
0.75

coef

Figure 3: Importance of the p = 6 predictors in driving cluster-specific central subspaces for
select countries, as well as for the overall fixed effects central space (bottom row), as obtained
from RPFC. An orange-green color gradient is used to indicate variable importance, with dark
green representing stronger importance.

depended most importantly on log income per capita, infant mortality, and income inequality.

However, the importance of these three remaining predictors varied greatly from one country

to another. For instance, infant mortality was important in Senegal but not in Mauritius and

Nicaragua, while the number of children per woman was important in Honduras but not in Ire-

land, Switzerland, and Poland.

For a point of comparison, we constructed the same metrics by applying SPFC, and results anal-

ogous to those presented in Figure 3 can be found in the Appendix. Moreover, Figure 4 compares

the distributions of each variable’s importance across cluster-specific central subspaces from the

two approaches. Interestingly, the distributions given by SPPC tended to exhibit more variability

than those given by RPFC for the first four predictors, but the trend is somewhat reversed for the

average childern per woman and income inequality. While sex ratio was very important in SPFC

across most countries, it tended to be the least important for RPFC. On the other hand, log income

was highly important for RPFC but its importance varied greatly from one country to another for
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Figure 4: Boxplots of the importance of the six predictors for RPFC and SPFC, as measured
by the corresponding diagonal elements in the projection matrix associated with cluster-specific
central subspaces, across all n = 117 countries.

SPFC. The relative patterns of variability for RPFC were consistent with what was seen in the

estimate of Σ̂, e.g., log income, sex ratio, and emissions consumption per person exhibited less

variability across countries compared with the other three variables.

Finally, in the Supplementary Materials, we present scatterplots of the response versus cluster-

specific sufficient predictors i.e., Zi = X⊤
i Θ̂i, for selected countries. Results show that female

life expectancy exhibits a strong, sometimes close to linear relationship with one or both of the

two sufficient predictors across many countries. In some countries such as Malta and Canada,

the first sufficient predictor is more informative about the response than the second one. This

is reversed though for other countries such as Bangladesh, while in some other countries e.g.,

Laos, both sufficient predictors are strongly and close to linearly associated with female life

expectancy. Overall, these results (further) demonstrate the heterogeneity across countries in

terms of the sufficient dimension reduction.
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8 Discussion

We proposed random effects sufficient dimension reduction in clustered data settings, where the

cluster-specific central subspaces are assumed to follow a common distribution on a Grassmann

manifold. By defining the distribution as the image of an exponential mapping of a distribution

defined on the tangent space of the Grassmann manifold at an overall fixed effect central sub-

space, this facilitates computational efficiency and straightforward interpretation similar to the

traditional mixed effect models. We incorporated random effects SDR in the context of the prin-

cipal fitted component (PFC) model, and proposed a two-step fitting procedure for the resulting

random effects PFC model to estimate the overall central subspace and the covariance matrix

characterizing the heterogeneity between clusters, and to predict the random cluster-specific cen-

tral subspaces. Simulation studies show the random effects PFC model has superior performance

to both a global fixed-effects PFC model ignoring all the clustering nature of the data, and a

cluster-specific fixed-effects PFC model that does not share information across clusters. We

applied RPFC to analyze the relationship between female life expectancy and various socioeco-

nomic variables across different countries over years.

Multiple extensions can be made to enhance and broaden the applicability of RPFC and random

effects SDR in general. One can generalize the inverse predictor Xij|yij from being normally

distributed to being from an exponential family, such as those developed in Cook and Li (2009).

This extension would allow an SDR model on the covariates with mixed types of variables, such

as categorical, count, and continuous. Theoretically, future work could study the prediction error

of the cluster-specific central spaces e.g., the behavior of n−1 ∑n
i=1 ∥P(Θ̂i)− P(Θi)∥F when

the cluster sizes mi are also growing n, establish the order consistency of SAIC (say) in selecting

d, and develop inferential properties for the random effects covariance matrix Σ that account for

potential boundary issues). Finally, in terms of modeling the random effect central subspaces, one
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can explore more structures for the covariance matrix Σ on the tangent space of the Grassmann

manifold at the fixed effect central subspace.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains the proof of all theoretical results in Sections 2-4 and

additional results for the application in Section 7.
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